当前位置:首页>文秘知识>2023年大数据概述论文(通用19篇)

2023年大数据概述论文(通用19篇)

时间:2023-11-01 01:02:17 作者:HT书生

作文是一项重要的语文活动,有助于培养学生的思维能力和表达能力。下面是一些优秀的范文范本,希望能够给大家提供一些帮助和参考。

大数据营销创新研究论文

大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。

近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。

对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。

正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。

国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。

2-1营销活动将更科学化。

大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。

2-2营销活动将更个性化。

随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。

2-3企业营销组织机构和人员工作职能将围绕数据展开。

大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。

2-4营销活动将可预测。

大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。

总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。

3大数据时代面临的挑战。

3-1数据的质量问题和数据人才的缺乏。

大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。

3-2数据的复杂化难以管理。

当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。

3-3公众和个人隐私问题日益凸显。

当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。

3-4数据精准性与服务精准性不对称。

尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。

4大数据背景下营销领域伦理问题的解决途径。

大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。

4-1国家应当制定相应的法律法规来约束不法行为。

由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。

4-2通过行业自律来约束自身的伦理机制。

由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。

5结论。

大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。

大数据时代教学建设论文

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧―。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

3、大数据带来的影响。

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

云计算环境下的大数据可靠存储关键技术概述论文

经济发展迅速的今天,在各行各业都会应用到数据信息处理技术以及计算机技术、通信技术等对相关数据做出一定的有效处理,当下看来,海量信息显然单靠计算机无法满足其处理操作,类似存储、计算等,这一背景下,基于云计算环境的分布存储技术研究应运而生,首先研究其可扩展性。研究之前先分析传统的数据存储计算,其通过冗余的磁盘实现相关要求,那种采取与流行时进行提高数据存储可扩展性的方式虽然确实实用了一定时间,它在一定程度上实现满足了数据的存储空间,只是基于云计算之中的庞大的海量的数据节点,其存储的数据规模以及相关数据中心的规模仍然处在不断扩大的趋势之上,不断增长的需求存储容量显然不能由磁盘预留方式来实现了。因此,云计算环境下的分布存储技术又到达了一个致高点。云服务提供商的数据中心不可能采取冗余磁盘预留的方式来扩展存储空间,并且它也不可能在建立之初将所有的操作都完完全全规划好,譬如说谷歌当前看来,已经在全球的数据中心就有36个,并且每一个数据中西所包含的计算机节点达到了数百万个;再譬如微软的数据中心,对外宣称其将会在全球建设多余二十个数据中心,同时在九月份已经在芝加哥形成了全球最大的模块化数据中心,其中包含了二百二十多个集装箱,同时每一个集装箱中机器数都在两千作用,其服务器还会以十四个月为周期进行成倍增长,赶超摩尔定律增长速度,因此,基于数据中心的网络可扩展性进行研究意义十分重大,以期能够适应当下不断增长、扩展的应用需求。

2.2容错性研究。

云计算提供商仅仅依靠传统的提高容错性的方法进行操作显然满足不了当下的需求,这是因为传统的容错性提高办法是经由高性能的服务器、raid技术或者是专用的存储设备来进行相关操作,完成这一内容的成本十分高昂,根本无法满足现今云计算提供商的要求,除上述之外云计算之中庞大的节点以及数据规模注定了极高的失效概率。在云计算这一大环境下,操作失效非常常见。譬如在谷歌公司中,就曾在零六年做出过一份报告,即在云计算环境的分布存储技术的数据中心内部,平均每一个mapreduce作业的运行过程之中就包含了五个失效的节点;每一个拥有着四千个节点金星运行的mapreduce作业的相关数据中心中,几乎平均六个小时中就有一个小时的磁盘失效时间,这无疑会给云服务的提供商和资源应用者带来不同程度的麻烦和损失。除了上述之外,还有很多情形下会造成失效的结果。总而言之,云计算环境下分布存储的频频失效必将带来不同程度上的损失,其程度不可估量,因此当下而言,容错成为云计算环境之下分布存储所面临的一项巨大挑战,同时其亟待解决。关于云计算环境下的分布存储,想要更为彻底有效科学的提高其容错性,单研究节点之间的相互关联关系,以提高在屋里拓扑结构上的容错性是远远不够的,与此同时,必须同时研究在节点上存储着的数据的相关组织和管理操作,以提高数据容错性,达到最终目的。

2.3成本控制方面。

云计算环境下的数据存储技术之所以需要在成本控制方面做出一定的研究,是因为传统的分布存储所需要管理组织的节点和数据的规模都非常显,能耗相对也自然比较小,同时于企业而言,低消耗下他们是愿意通过成本输入来交换可靠性能以及效率的。然而,在云计算环境下的分布存储,其能耗是非常大的,同时为了使设备处在正常运转的状态之下,能耗还要增加很大一部分。在24*7的运行模式下,在数据中心的存储开销中非常重要的一个组成部分就是能耗。曾有研究人员作出相关研究发现,基本上每一台服务器四年的能耗与其相关硬件的成本不相上下,而且一旦能耗有所降低,在很大程度上还可以提高磁盘等一些硬件设备的运行寿命,这些都会大幅缩减整个数据中心的成本,因此就可以说,当下云计算环境下的分布存储面临的又一大挑战就是如何降低能耗进而降低成本,相继会产生的优良效果就是能源得到节约,环境得到保护。总而言之,云计算环境下的分布存储需要研究的重大内容即尽可能多角度的对设备的制冷消耗进行研究,从而期望在更大程度上降低云计算的成本费用。

3数据中心网络构件技术。

3.1以服务器为中心。

之所以会研究到数据中心网络构件技术,是因为数据中心是使得云计算得以正常运行的基础所在,通常来说,它主要的包括着两个部分,分别是软件和硬件,软件即数据中心提供出服务时所应用到的`软件;硬件即数据中心的相关计算机设备以及支撑系统的一些基础设施。以服务器为中心的结构,主要即是在每一个数据中心的相关服务中都会安装网卡,且数量较大,然后运用网线把网卡和服务器进行连接,继而成为一个完整的网络整体,这样做的目的之一是增大数据中心的存储功能。以服务器为中心的结构在结构的组成以及线路的连接两个方面都比较简单,从而达到确保网络底层与服务器之间的有效数据交互,当前看来还有功能更甚强大的路由算法,然而这一结构自身也存在着一定的不足,即由于数据信息会占据相当大的服务器计算资源,就会导致存在一些链路无法实现功能,继而使得服务器的数据压力更大,服务器的计算速率自然受到一定程度的影响,成本的费用以及功能的损失两方面来说都产生了一定的消极影响。

3.2以交换机为中心。

以交换机为中心的网络构件结构其实最主要就是对于交换机的应用,交换机将每一个服务器的数据中心有效地连接,再通过交换机进行数据包转发,当然,云计算环境下的分布存储,相关的服务器负责的功能有所不同,其只是对于数据信息的存储以及处理负责。通常以交换机为中心的网络构件被交换机分成了三层,最为主要的分别是核心层、边缘层以及聚合层。云计算环境下的数据中心中,经由交换机作为中心的网络构件结构具有的优点有操作简便,稳定高效,同时还可以通过交换机的应用实现一些扩展功能,然而,这一结构也存在着一些难以避免的缺陷,比如由于交换机的使用,导致整个数据中心的操作具有不够良好的灵活性、较低的服务器利用效率以及交换机资源的浪费等,通常而言,这一结构在传统的数据中心网络构件中应用较多。

3.3混合模式。

混合模式顾名思义就是将上述两种数据中心网络结构进行有机的结合,进而形成一种功能上更加强大,实现互补的新型结构。在混合模式的结构中,主要是将交换机作为将服务器进行连接的节点,同时配合安装在服务器中的多个网卡,除此之外,混合模式的网络结构中实现了特定场景下的网络结构,它综合上述两种结构的优势,因此比其更加的灵活自由,同等性能的条件下,对于数据中心的成本而言有一定的降低功能。

4结束语。

总而言之,云计算中庞大的数据节点以及相关的网络设备进行有效的有机结合,进而就形成了一个或者是一些较为大规模的数据中心点,从而达到向用户提供一些基本性质的服务,使得客户的使用需求得到满足。总而言之,云计算环境下的分布存储技术使得庞大的数据信息得以存储,存储位置即为数据中心内部中的众多节点中的不同节点之上,更为甚者会存储到在不同数据中心的不同节点上。整体来说,基于云计算环境的分布存储技术它所研究的主要内容即上述内容,如何实现有效地组织和管理在数据中心中进行存储的大量数据信息。

参考文献:

云计算环境下的大数据可靠存储关键技术概述论文

摘要:云计算是一种全新的计算模式,其在科学计算以及商业计算领域发挥的作用不可估量,当前在学术界以及企业界等都受到了非常广泛的关注。云计算环境下的分布存储技术?整体而言,它研究的主要内容是在数据中心上对于数据的相关管理和组织,是云计算环境的核心内容和最基础设施。通常来说,数据中心是由上百万级别的节点综合组成的,因此这也就自然造成了数据失效的经常发生,这就对云计算的推广和应用造成了向大限度的限制,基于上述一些层面,对于云计算环境下的分布存储技术进行研究意义重大。

随着信息技术的飞速发展,社会和科学也已不可估量的速度飞速行进着,与此同时,在各行各业中不断推进和广泛应用的信息化向信息技术发出了更新一轮的巨大挑战,对信息技术向前发展起到了促进作用。云计算随着存储、通信技术以及计算等的发展而出现并得以广泛应用,使得用户能够更便捷、适时地访问云服务提供商提供的信息资源,整体来说,云计算同时具备着高可靠性、虚拟化、超大规模、价格低廉等特性,极大程度上满足了海量数据存储要求。在这一环境下的分布存储技术作为云计算的基础,虽然功能强大,然而从当前形势看来,它面临着巨大的挑战,因此需要不断地做出分析和研究。

1云计算技术。

云计算是一种为了能够更好地满足相当数量的数据信息的计算以及存储等相关服务,同时跟随当下形势呈现出非常流行趋势的通信技术而产生的新型的、能够为各行各业进行分享基本数据资源的一种计算模型。云计算服务提供商基本上是不参与相关流程的,云计算机能够保证用户实现随时、便捷且放百度呢存储服务、访问网络服务、计算服务等一系列资源。源头上看来,云计算服务提供商是将庞大的数据节点以及相关网络设备进行科学有效的有机结合,继而就可以形成一个或者是一些具与一定规模的数据中心,进而由这一数据中心向有所需的用户提供到他们需要的服务,最大程度上满足了用户的使用要求。

关于云计算这一方面做出的相关研究表明,云计算具有最为显著的属性包括高稳定性、可扩展性以及规模超大灯,因此就可以在相应的环境下很好地实现庞大数据信息的存储操作,存储的位置多为不同数据中心的不同节点之上,即存储在这些节点之上的数据信息都是透明的、共享的,因此一旦用户有哪一方面的需求,只需通过云计算服务提供商提供出的数据访问接口就可以满足自己需求,获取到其中心内部存储的数据信息。然而当前看来,基于云计算环境的分布存储技术显然也是遇到了一些巨大的挑战,云计算数据中心的数据量、数据信息的规模是非常可观的,无疑会为数据中心的相关有效成本费用、容错性以及可扩展性等方面带来挑战,需要我们不断地做出分析研究。

大数据时代教学建设论文

“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据时代》就这样在坚持中溶入我的思想。

大数据时代教学建设论文

20xx年5月世界著名咨询机构麦肯锡公司发布了《大数据:下一个竞争、创新和生产力的前沿领域》的研究报告,宣告“大数据”时代已经到来。大数据时代的到来对人力资源管理带来了新的变化和机会。通过运用大数据思维方式,利用移动互联网+的新技术、新方法能够进一步完善人力资源管理信息系统,使人力资源管理更加专业化、科学化,为人力资源管理信息化建设迈入4.0创造了条件。

二、人力资源管理信息化历程。

人力资源管理信息化,主要是指企业基于互联网,依托先进的人力资源管理理论,以软件系统为平台,通过信息技术对人力资源进行优化配置的动态过程。人力资源信息化是信息时代人力资源发展的必然趋势,是企业及时满足业务需求,实现企业高效的人力资源管理,增强企业核心竞争力的必然手段。笔者认为人力资源管理信息化随着信息技术的发展经历了1.0、2.0,3.0并在向4.0进发的历程。

人力资源管理信息化1.0阶段指的是上世纪80年代初,随着计算机在管理领域的普遍应用,国外一些先进的应用软件企业开始将关注点聚焦于人力资源管理领域。首先利用应用软件进行的是人力资源管理中最复杂最繁重的薪资管理,这大大降低了该项工作的繁冗程度并且提高了效率。由于当时计算机网络不是很普及,人力资源管理系统基本是孤立地、单一的软件。

随着数据技术、网络技术的发展,人力资源管理系统迈入2.0时代。人力资源管理信息化已经开始触及人力资源管理的各个方面。但是受限于数据计算能力和应用处理能力,对于大型集团的人力资源管理系统一般是按分支机构分别购置服务器部署运行,各分支机构定期汇总数据上报总部。人力资源管理系统2.0时代基本已经实现人力资源管理基础信息的电子化,使hr人员从繁重的基础信息处理工作解脱出来,有更多的时间去考虑组织及员工的发展需求。但是在2.0阶段,人力资源管理系统对于数据的分析和应用还停留在简单的报表阶段,还未形成对人力资源数据的预警、预测、数据挖掘和分析。

进入21世纪后,随着计算机和互联网技术的发展,人力资源管理系统采用数据大集中以及基于互联网访问的技术,从单一的人力资源部门的电子化软件扩展到涉及公司各个层面的关键信息系统。通过面向全员的信息化工具,人力资源管理系统3.0阶段一方面可以通过系统全面落实人力资源管理规划,另一方面通过延伸人力资源管理范围,提高各级人员参与人力资源管理的程度,有效地改善了人力资源部门的服务范围和服务质量。人力资源管理系统3.0阶段由于采用数据大集中技术,对数据的挖掘分析以及多维度的预警、预测已经成为可能。人力资源管理的数据优势已经在企业经营分析、管理决策中逐渐发挥出来。企业人力资源管理部门以及各级管理者已经开始利用人力资源数据提升经营决策的科学性。

随着大数据时代和移动互联网时代的到来,将大数据的概念和技术引入人力资源管理将进一步提升人力资源管理信息化水平,人力资源管理信息化将步入4.0时代。

大数据这一概念,首先要从“大”入手,“大”是指数据规模,大数据一般指在10tb(1tb=1024gb)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4v来总结,即体量大(volume),数据从tb级别跃升到pb级别,庞大且连续的数据流使得数据更具完整性;多样性(variety),数据类型繁多,数据来源及承载方式多样化;速度快(velocity),数据可以高速地存储,借助于云计算,即使在数据量非常庞大的情况下,也能做到实时处理;价值的稀疏性(value),信息海量但价值密度低,犹如大海捞针却弥足珍贵。

进入大数据时代,对人力资源管理及其信息化建设将带来巨大的机遇和挑战,人力资源信息化在4.0阶段将呈现出以下特点:

1.人力资源管理系统数据的多样化及社交化。

在大数据时代,忠实地采集、记录人类活动的一切数据是基础。人力资源管理系统数据在大数据时代将不再局限于人力信息档案或者“人事部门”的数据。企业的经营数据、利润数据等业务数据也将纳入人力资源管理数据范畴。同时员工的社交数据、地点数据、工作数据等碎片数据也将被系统采集和分析。人力资源管理系统的数据模型和数据存储方式将被重新定义以满足数据存储、处理和分析所必需的高速和敏捷。

2.人力资源管理系统“移动化”与安全性。

为了能够随时随地获取“与人相关”的数据,大数据的收集渠道将不再仅仅局限企业内部的信息系统,人力资源管理系统必须具有随时随地获取数据的能力。人力资源管理系统数据获取将更多地依靠移动端甚至是传感器等新技术的使用,人力资源信息化需要打造一条有效连接hr所服务的管理者和员工的信息高速公路。由于“人的数据”高度连接和聚合,数据的安全性和隐私保护将成为一个重要课题。有效地解决数据的公开和隐私的问题将是人力资源信息化建设者必须面对和解决的一个重要挑战。

3.人力资源管理系统工具的多样化。

在拥有和采集了大量人力资源日常数据后,对数据的分析、整理、整合的能力将至关重要。传统的、单一的人力资源管理系统将无法胜任如此庞大的.数据处理任务。通过采购第三方的数据处理、分析工具将有利于提升人力资源管理系统的数据分析能力,有利于企业通过数据驱动人力资源管理创新。

同时,在人力资源管理人才招聘、人才测评、薪酬管理、人才绩效等垂直应用方面,由于大数据分析强调预测性以及前瞻性管理,人力资源管理应用将更具有专业性,市场上将出现多种专业性的应用工具。在人力资源信息化建设上,企业可以根据自身需要自主、灵活地选择专业化的工具,满足企业个性化需求。

4.人力资源管理系统“云服务化”

随着大数据和互联网技术的不断融合,基于云计算、云平台的人力资源服务平台将不断涌现。数据按需计算,企业按需付费的模式将不断成熟。对于传统企业来说,人力资源信息化将有了更快捷、便利的选择。企业信息化部门在实施人力资源信息化时将不再需要购置大量设备、采购产品软件后进行个性化实施,而只需按照企业需要购买相应的云服务即可。同时,由于在大数据应用的复杂性,不具有很强技术实力的企业可以借助云计算能力充分挖掘数据的价值,突破企业计算能力的壁垒,实现人力资源大数据应用。

大数据时代,企业的竞争将是数据应用能力的竞争。人力资源信息化建设的从业者利用大数据技术建设更加专业化、智能化的信息系统,为人力资源管理服务提供更加客观、科学的数据服务将给企业创造出巨大的价值。人力资源信息化建设也会因为大数据技术的应用迈入一个崭新的时代。

参考文献。

[1]周光华.基于“大数据”价值对人力资源管理的思考。

[2]唱新.大数据在人力资源管理体系的应用。

[3]李柯.大数据时代人力资源管理的机遇、挑战与转型升级。

统计学与大数据论文

探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。

统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。

一探究式教学法在统计学原理课程中的实施环节。

1问题选取。

要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。

在实施探究式教学的初期阶段,应选取单一的并能够在较短时间内完成的问题。最好是能够当堂形成结论且给学生较深的印象。随着探究问题的不断深入,结合教学大纲,问题的.选取进一步深化,逐步设置有一定探究压力但系统性不强并限定探究学习难度的问题。此时可以按照不同的抽样标准实施抽样,让各抽样小组分别观察其组内的方差水平。在此基础上一旦实施整群抽样,则误差水平可能的变动趋向。也可以就静态指标和动态指标的特点提出问题,让学生分别去对应会计课程的存量指标和流量指标,以学科之间的交叉和连贯激发学生的探究热情。等到学生逐步适应探究式学习这一新的学习模式后,教师就可以布置系统的、需要学生分组分任务在较长时间内才能完成的任务。

2布置问题。

将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。

3迅速完成组内分工。

各组领取任务后,在较短时间内由组长在本组内根据个人的特长确定组内分工(3~5分钟即可)。制定抽样方案、实施抽样、搜集整理数据、查阅资料、分析推断、撰写报告等。对于具有共性并较为重要的知识点,应要求每一个学生都独自完成,不因分工而隔断知识体系。

4收集分工情况,据此串讲知识点,引导学生的工作方向。

教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向?指数体系的确立基于什么考量和出发点?指数体系的确立和因素分析的实际意义在哪里?等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。

5文献检索,初步探究。

学生根据教师的点拨,依据各自工作任务,分头查阅相关文献资料。指导学生利用图书馆、互联网查阅相关的统计公报、统计年鉴、报纸杂志和相关学科的理论知识。并在此基础上对所持问题进行初步探究。资料文献的查阅也是一个循序渐进的过程。学生很可能在探究初期只是查阅了和问题直接相关的表象资料,而忽略了深层探究所需数据的收集,结果出现“头疼医头、脚疼医脚”的局面。

6集中讨论,相互激励,深入探究。

各小组成员在收集相关资料并形成初步意见后,可及时组织大家集中讨论。每个人均可阐述自己观点,对所选用数据资料的可信度,使用方法是否得当等,听取他人意见。讨论过程中可有效实施相互的智力激励,迸发出灵感火花,为进一步发现深层次问题,探究和解决深层问题打下良好基础。

7课堂交流、汇报。

学生在组内讨论探究的基础上,各自完成分工任务。形成统一意见后,应将成果制作成ppt文档。在规定时间内由教师组织集中进行课堂交流、汇报。由各组主讲人通过ppt演示本组工作过程和工作成果,允许组内其他成员加以补充完善。

8教师讲评。

根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。

二探究式教学法在应用中应注意的几个问题。

探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。

探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。

2探究式教学需要教师的及时引导和启发。

在实施这种教学方法的初期,由于学生对新的教学模式一时难以适应,会因各小组组织不力,学生无从下手,不了解整个教学活动的核心内容,而产生畏惧情绪。因而教师要及时地加以引导,为学生指明工作的方向并及时答疑解惑。教师可以利用常规教学课堂平台,也可以利用互联网的相应沟通平台或手机飞信、微信等方式,收集学生意见和问题并及时给予指导,将学生引导到独立探究、合作探究的学习环境中,逐步形成探究式学习的良好氛围。

3探究式教学仍需要传统的课堂讲授模式加以配合。

对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。

4探究式教学课后占用时间较多,容易加大学生的学习负担。

教师要合理安排探究式教学内容。挑选有针对性和实际意义的内容作为选题,并适度调整教材体系中的相关章节。做到教学有重点、探究有实效。把一些容易理解和掌握的知识交给学生自我消化,或由教师使用传统方式串讲带过,把核心知识且具有探究的条件和意义的章节认真组织学生探究学习。避免全面开花、拘于形式,结果造成学生到最后劳神费力、难有所获。

统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。

大数据时代教学建设论文

大数据时代的来临,使企业进入战略绩效管理信息化时代加快了脚步,然而,企业cio在面对繁杂、庞大的数据信息时,如何做到价值最大化的被企业利用,为企业战略绩效管理系统服务,需要一套庞大、严谨的战略管理体系支撑,在以企业战略管理体系的框架支撑下,数据才能使管理系统如虎添翼,引领企业飞速发展。

研究esp系统发现,建立大数据时代下的战略绩效管理信息化系统,先要明确发展战略目标,在此基础上,为数据信息的价值实现构建管理体系框架,数据信息能否被有效利用取决于战略管理系统的体系设计。

大量的数据信息在全面、有序的企业战略管理框架中被归类、识别,并通过战略管理系统中的分析工具被分析、重置,再通过辅助保障系统将分析后的数据信息按流程、组织,系统的输送给终端。形成一整套企业战略管理信息化系统,以便于员工高效和正确的运用数据,真正实现数据可用性。

从管理信息化落地执行的角度看,esp的贡献在于能够帮助企业管理信息化高效的实现,全面落地、彻底执行并可视化监控和有效的评估,否则企业再好的战略、全面的管理体系落不了地、也不能产生很好的效果,更谈不上发展。

大数据时代教学建设论文

摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。

关键词:大数据;信息化;就业。

随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。

一、目前我国就业信息化建设的现状及不足。

经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:

(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。

(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。

(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。

(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。

随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。

大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。

利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。

(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。

(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。

(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。

随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。

总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。

参考文献:

[2]杨旭,汤海京,丁刚毅.数据科学导论[m].北京理工大学出版社,2014.

大数据与信息管理论文

随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。

信息化;招标代理;企业管理。

第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。

大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。

第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。

今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。

作者:张贤恩高秀英单位:枣庄市团校。

[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.

云计算环境下的大数据可靠存储关键技术概述论文

大数据环境云计算中,电子商务的未来发展也受到了一定程度的影响,主要在关系型数据库和搜索引擎方面实现优质的发展,分析如下:

2.1关系型数据库影响。

电子商务的关系型数据库,运行在分布式的环境内,属于云计算提供的运行条件。云计算对电子商务关系型数据库的影响,促使电子商务业务能帮分布在不同的服务器内,利用关键对象,即可获取电子商务的业务信息。云计算在电子商务关系型数据库的未来运行中,打破了空间、时间的限制,减少了电子商务运行响应的时间,促使电子商务的数据库,始终保持在高效运行的状态,保持数据同步,数据库在不同的单位内,也能明确电子商务数据库之间的关系。如果云计算无法把控电子商务的关系型数据库,就会影响电子商务在大数据环境中的状态。由此,大数据环境下云计算对电子商务关系型数据库的未来影响,决定了电子商务业务的发展方向,强调电子商务在云计算环境中的安全性。

2.2搜索引擎的影响。

云计算对电子商务未来的影响,效益最高的是搜索引擎方面。云计算对电子商务搜索引擎的未来影响,能够帮助电子商务准确的识别搜索请求,判断搜索引擎中的隐藏信息。大数据环境下的云计算,在电子商务的搜索引擎中,提供了网页搜索服务、整合搜索服务、语言机器翻译服务和语音搜索服务功能,在电子商务业务中,实现了多样化、多渠道的搜索服务,保障电子商务在各种各样的搜索下,均能为用户提供指定的服务,以免增加电子商务搜索引擎的服务压力,体现大数据环境云计算的未来影响。

3结束语。

大数据环境下的云计算,为电子商务的运作提供了资源和条件,改善了电子商务的运行环境。大数据环境云计算对电子商务的影响,体现在多个方面,促进了电子商务的未来发展。大数据环境云计算的运用,提高了电子商务的发展效率,在此基础上,降低了电子商务的成本与资源消耗。

参考文献:。

大数据时代教学建设论文

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托・迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文・凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据的心得体会论文

在当今科技发展迅猛的时代,大数据已成为不可忽视的重要资源。它为我们的生活带来了很多改变,也给企业、政府和个人提供了更多机会。通过对大数据的学习和实践,我意识到了大数据的重要性和潜力。在这篇文章中,我将从数据收集、数据分析、数据隐私、数据治理和数据应用五个方面分享我对大数据的心得体会。

首先,数据收集是进行大数据分析的基础。无论是企业、政府还是个人,我们都应该积极参与数据收集。在大数据时代,每个人都是潜在的数据生成源。企业可以通过设备和传感器收集销售数据和用户行为数据,政府可以利用数据收集来改善公共服务,个人可以通过社交媒体和移动应用来分享自己的数据。数据的多样性和数量越大,分析结果越准确,应用场景也会更多。

其次,对数据进行分析是利用大数据的核心。大数据分析可以帮助企业和政府发现隐藏的模式和趋势,为决策提供有力支持。在我们的日常生活中,大数据分析也是无处不在的。我们可以通过购物网站推荐来发现感兴趣的产品,通过社交媒体的算法来找到和我们兴趣相投的人。然而,大数据分析不仅仅是利用算法和工具,还需要人的智慧去理解数据背后的故事。

第三,数据隐私是大数据时代面临的主要问题之一。随着数据的不断增长,隐私问题也日益突出。个人数据的泄露可能导致信息被滥用,对个人和社会带来无法估量的风险。因此,数据隐私保护应该成为我们在使用大数据时考虑的重要因素。政府需要制定相应的法律和法规来保护个人隐私,企业需要建立严格的数据使用和保护机制,个人也应该提高自我保护意识,选择安全可靠的应用和平台。

第四,数据治理是保障数据质量和安全的重要手段。数据治理是一种组织和管理数据的方式,涉及到数据的标准化、清洗、分类和存储等方面。数据治理的目标是确保数据可靠和可用,提高数据价值和利用率。在数据治理过程中,需要建立明确的责任和权限,制定相应的规范和流程,采用合理的技术手段来保护数据的完整性和安全性。

最后,大数据的应用是实现数据价值的最终目标。大数据的应用可以涵盖各个领域,如金融、医疗、交通和教育等。通过大数据分析,金融机构可以预测风险,提高客户满意度;医疗机构可以个性化治疗,提高疗效;交通部门可以优化交通流量,减少拥堵;教育部门可以根据学生的兴趣和能力提供个性化教育。大数据的应用可以为企业提供竞争优势,为政府提供决策支持,为个人提供个性化服务。

综上所述,大数据是当今信息社会的重要资源,对企业、政府和个人都具有重要意义。通过对大数据的学习和实践,我深刻认识到了数据收集、数据分析、数据隐私、数据治理和数据应用的重要性和挑战。在未来的发展中,我们需要更加重视数据的收集和利用,同时加强对数据隐私的保护和数据治理的规范,以实现大数据的最大价值。

大数据论文范文

职责:

4、承担分析报告撰写的主笔工作。

任职资格:

1、本科以上学历;

4、具备数据操作能力,熟练使用excel,熟练使用spss等至少一种统计软件;

5、具备独立完成ppt制作,报告撰写能力;

6、良好的英文写作能力,能撰写英文分析报告;

7、良好的沟通与表达能力,能与客户对接需求。

大数据时代的大数据管理研究论文

摘要:传感器网络协议作为传感器与传感器之间,传感器与用户之间的通信媒介,在数据传输过程中因缺乏数据管理,经常导致传输给用户的数据是混乱的。针对上述问题,研究一种基于数据管理的传感器网络协议。该协议采用分层思想,将传感器网络协议分为四层:物理层、访问控制层、网络层以及应用层,并将传感器网络协议层集合成网络协议栈,完成数据有序传输。

关键词:数据管理;传感器;网络协议;协议层;协议栈。

目前存在的传感器网络协议由于层次划分的并不明确,经常导致采集到的数据出现混乱,不利于后期的数据管理(存储、处理和应用等)[1]。因此为方便后期数据管理,在数据管理的前提下,对传感器网络协议进行研究,以期解决数据混乱的问题。首先构建传感器网络协议层,协议层主要包括物理层、访问控制层、网络层以及应用层;然后将各层组合在一起构建传感器网络协议栈,协议栈主要为各层之间的数据传输提供软件方面的指导。基于数据管理的传感器网络协议研究,为数据通信工作奠定基础,加快了数据的`获取,方便了数据传输。

一、传感器网络协议研究。

传感器网络是微电子技术、嵌入式信息处理技术、传感器技术等几种结合并构建的一种属于计算机网络。数据量大且繁杂是当代大数据时代的特点,如果不对数据加以处理,人们要想快速、有效获得自己需要的数据,无疑大海捞针的,因此为应对当前传感器网络存在的问题,将设计好的网络协议嵌入其中是当前研究的重点课题之一[2]。

(一)传感器网络协议层。

为解决传统传感器网络协议划分不明确,导致数据混乱,不利于数据管理的问题。本次研究的传感器网络协议明确划分为4个层次,每个层次负责数据管理过程中的不同步骤,以规范数据流向。下图1为是传感器网络协议结构图。从图1中可以看出,本次研究的传感器网络协议一共分为4层:物理层、访问控制层、网络层以及应用层[3]。(1)物理层。传感器网络协议物理层主要负责定义物理通信信道和与访问控制层之间的连接。简单的说,就是接收或发送传感器前端摄像头采集到的数据,以及维护由以上数据构建的数据库。(2)访问控制层。传感器网络协议物理层主要负责物理层中数据的分类管理和传输。分类管理主要根据采集的数据类型进行分类确认,而传输主要是将分类结果进行传输。(3)网络层。传感器网络协议网络层是整个协议中的核心层次,主要负责传感器与传感器、传感器与观察者之间的通信以及信息交流。在网络层中可以实现多种异构数据的兼容、融合以及转换、传输,为后续数据管理做好前期的工作准备,使得不必在后期进行二次处理[4]。(4)应用层。传感器网络协议网络层是整个协议中的最后一个层次,主要负责与用户之间的数据交互,也就是将以上几层的数据分析结果按照用户的请求发送给用户。

(二)传感器网络协议栈。

协议栈,又被称为协议堆叠,是上述介绍的4个层次的总和,其实质反应了数据的往复传输过程。从下层协议的数据采集到数据传输再到上层协议的数据呈现,之后又从上层协议发出命令,命令下层传感器进行数据采集。传感器网络协议栈协调了不同层级之间的数据属性,在协议体系中,数据按照规定的格式加入自己的信息,形成数据位流,在各层级之间传递[5]。传感器网络协议标准采用了ieee802.15.4标准,各层级之间利用接入点实现数据交流和管理,一般接入点有两个,一个接入点负责数据传输,另一个接入点负责数据管理。在传感器运行过程中,各种不同属性的数据在不同层级上奉行不同命令。这样做有利于数据的有效分类,使得数据管理更为方便。

二、结束语。

传感器能够监测外部环境信息并按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,广泛应用工业生产、机械器件制造、灾害监测、气象预测等诸多领域。但是由于传感器的监测是实时监测,所以数据量过于庞大,如果不加以管理,将会直接影响后期数据分析结果。本次研究针对上述问题,将数据管理作为中心指导思想,进行传感器网络协议研究,以期为数据管理做出技术支持。

参考文献。

大数据论文范文

职责:

1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;

3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;

4、协助完成业务关键目标指标制定、目标达成过程管理。

任职资格:

1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;

4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;

5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。

大数据毕业论文:大数据时代

伴随着科技进步,互联网及移动互联网的快速发展,云计算大数据时代的到来,人们的生活正在被数字化,被记录,被跟踪,被传播,大量数据产生的背后隐藏着巨大的经济和政治利益。大数据犹如一把双刃剑,它给予我们社会及个人的利益是不可估量的,但同时其带来个人信息安全及隐私保护方面的问题也正成为社会关注的热点。今年两会期间,维护网络安全被首次写入政府。

工作报告。

全国政协委员、联想集团董事长兼ceo杨元庆也在会议上呼吁“政府对个人信息安全立法,加强监管,并在整个社会中树立起诚信文化”大数据时代下维护个人安全成为重中之重。

(一)数据采集过程中对隐私的侵犯。

大数据这一概念是伴随着互联网技术发展而产生的,其数据采集手段主要是通过计算机网络。用户在上网过程中的每一次点击,录入行为都会在云端服务器上留下相应的记录,特别是在现今移动互联网智能手机大发展的背景下,我们每时每刻都与网络连通,同时我们也每时每刻都在被网络所记录,这些记录被储存就形成了庞大的数据库。从整个过程中我们不难发现,大数据的采集并没有经过用户许可而是私自的行为。很多用户并不希望自己行为所产生的数据被互联网运营服务商采集,但又无法阻止。因此,这种不经用户同意私自采集用户数据的行为本身就是对个人隐私的侵犯。

(二)数据存储过程中对隐私的侵犯。

互联网运营服务商往往把他们所采集的数据放到云端服务器上,并运用大量的信息技术对这些数据进行保护。但同时由于基础设施的脆弱和加密措施的失效会产生新的风险。大规模的数据存储需要严格的访问控制和身份认证的管理,但云端服务器与互联网相连使得这种管理的难度加大,账户劫持、攻击、身份伪造、认证失效、密匙丢失等都可能威胁用户数据安全。近些年来,受到大数据经济利益的驱使,众多网络黑客对准了互联网运营服务商,使得用户数据泄露事件时有发生,大量的数据被黑客通过技术手段窃取,给用户带来巨大损失,并且极大地威胁到了个人信息安全。

(三)数据使用过程中对隐私的侵犯。

互联网运营服务商采集用户行为数据的目的是为了其自身利益,因此基于对这些数据分析使用在一定程度上也会侵犯用户的权益。近些年来,由于网购在我国的迅速崛起,用户通过网络购物成为新时尚也成为了众多人的选择。但同时由于网络购物涉及到的很多用户隐私信息,比如真实姓名、身份证号、收货地址、联系电话,甚至用户购物的清单本身都被存储在电商云服务器中,因此电商成为大数据的最大储存者同时也是最大的受益者。电商通过对用户过往的消费记录以及有相似消费记录用户的交叉分析能够相对准确预测你的兴趣爱好,或者你下次准备购买的物品,从而把这些物品的广告推送到用户面前促成用户的购买,难怪有网友戏称“现在最了解你的不是你自己,而是电商”。当然我们不能否认大数据的使用为生活所带来的益处,但同时也不得不承认在电商面前普通用户已经没有隐私。当用户希望保护自己的隐私,行使自己的隐私权时会发现这已经相当困难。

(四)数据销毁过程中对隐私的侵犯。

由于数字化信息低成本易复制的特点,导致大数据一旦产生很难通过单纯的删除操作彻底销毁,它对用户隐私的侵犯将是一个长期的过程。大数据之父维克托・迈尔-舍恩伯格(viktormayer-schonberger)认为“数字技术已经让社会丧失了遗忘的能力,取而代之的则是完美的记忆”[1]。当用户的行为被数字化并被存储,即便互联网运营服务商承诺在某个特定的时段之后会对这些数据进行销毁,但实际是这种销毁是不彻底的,而且为满足协助执法等要求,各国法律通常会规定大数据保存的期限,并强制要求互联网运营服务商提供其所需要的数据,公权力与隐私权的冲突也威胁到个人信息的安全。

(一)将个人信息保护纳入国家战略资源的保护和规范范畴。

大数据时代个人信息是构成现代商业服务以及网络社会管理的基础,对任何国家而言由众多个人信息组成的大数据都是研究社会,了解民情的重要战略资源。近年来大数据运用已经不再局限于商业领域而逐步扩展到政治生活等方方面面。国家也越来越重视通过对大数据的分析运用从而了解这个社会的变化以及人民的想法,甚至从中能够发现很多社会发展过程中的问题和现象,这比过去仅仅依靠国家统计部门的数据来的更真实全面,成本也相对较小,比如淘宝公布的收货地址变更数据在一定程度上揭示了我国人口的迁移,这些信息对于我国的发展都是至关重要的。

因此将个人信息保护纳入国家战略资源的保护和规划范畴具有重要的意义。2017年政府工作报告首次提出了“维护网络安全”这一表述意味着网络安全已上升国家战略。这是我国在大数据时代下对个人信息保护的重要事件,也具有里程碑的意义。

(二)加强个人信息安全的立法工作。

大数据时代对个人信息安全保护仅仅依靠技术是远远不够的,关键在于建立维护个人信息安全的法律法规和基本原则。这方面立法的缺失目前在我国是非常严重,需要积极推动关于个人信息安全的法律法规的建立,加大打击侵犯个人信息安全的行为。2017年两会期间全国政协委员、联想集团董事长兼ceo杨元庆呼吁政府加强对个人信息安全的立法和监督,引起了社会各界广泛关注和重视,这充分说明这个问题已经成为一个重要的社会问题。我本人对个人信息安全立法工作有以下几点建议:第一,必须在立法上明确个人信息安全的法律地位。个人信息安全与隐私权“考虑到法律在一般隐私权上的缺乏,要对网络隐私权加以规范就有必要先完善一般隐私权的规定,因此首先应通过宪法明确规定公民享有隐私权。[2]”第二,必须从法律上明确采集数据的权利依据。由于在数据采集过程中经常发生对个人信息的侵害,因此无论是政府还是互联网运营服务商都必须遵循一定的原则和依据。政府采集数据的行为应该符合宪法的要求,而互联网运营服务商采集数据必须要经过当事人同意。第三,制定关于个人信息安全的专门法律。2017年国务院信息办就委托中国社科院法学所个人数据保护法研究课题组承担《个人数据保护法》比较研究课题及草拟一份专家建议稿。2017年,最终形成了近8万字的《中华人民共和国个人信息保护法(专家建议稿)及立法研究报告》。但到目前为止我国的个人信息保护法仍没有立法,因此加快这个立法过程是当务之急。

大数据的心得体会论文

随着信息技术的发展和智能设备的普及,大数据已经成为当今社会的热门话题。作为数据时代的核心,大数据不仅改变着人们的生活方式,也深刻影响着社会经济发展。在长时间的学习和实践中,我对大数据有了一些心得体会。本篇文章将从数据的来源、数据的处理、数据的应用、数据的挑战以及数据的未来五个方面,对大数据进行思考和总结。

首先,大数据的来源不仅包括了传统的企业内部数据,而且还包括了社交媒体、物联网、日志文件等非结构化和半结构化数据。与传统的数据相比,大数据具有体量大、速度快和多样性的特点,因此更加具有价值。大数据的产生与人们日常生活中的各个方面密不可分,例如我们在社交媒体上发布的照片、留言、评论等、在手机、电视、汽车等智能设备上的操作和行为也都产生了大量的数据。因此,我们要充分利用这些数据,挖掘出数据中的价值。

其次,对大数据的处理成为突破瓶颈之一。由于大数据的特点,传统的数据处理方法已经不能满足当前的需求。因此,人们开始采用云计算、分布式存储和分布式计算等新技术。云计算可以提供强大的计算和存储能力,分布式存储可以方便地处理大规模数据的存储,分布式计算可以加速大规模数据的处理。同时,机器学习和深度学习等算法的出现,为数据处理提供了新的思路。通过建立合适的模型和算法,可以更好地处理大数据,并从中发现隐藏的规律和关联。

第三,大数据的应用已经渗透到各个领域。在商业领域,大数据可以帮助企业更好地了解客户需求、优化产品设计、优化营销策略等,从而提高企业的竞争力。在医疗领域,大数据可以帮助医生更准确地诊断疾病、制定个性化治疗方案。在城市管理中,大数据可以帮助政府更好地了解城市运行的状态,制定科学合理的城市规划和交通管理。在交通领域,大数据可以帮助交通公司更好地安排班车和线路,提高乘客的出行效率。

然而,大数据也面临着一些挑战。首先是数据安全和隐私问题。大数据的应用离不开个人信息的采集和存储,而这又与用户的隐私密切相关。因此,我们需要建立合理的数据保护机制,使用户数据安全可控。其次是数据质量问题。大数据的质量直接影响数据分析和决策的准确性和有效性。因此,我们需要加强数据质量的管理和控制。此外,大数据的运营和维护也需要相应的技术和人才支持,这对于很多企业来说是一个挑战。

最后,对于大数据的未来,我非常看好。随着技术的进步和应用场景的拓展,大数据将会有更广泛的应用。例如在智能家居领域,大数据可以帮助家庭更智能地控制和管理各类设备。在教育领域,大数据可以帮助教育机构更好地了解学生的学习情况和学习模式,从而制定更适合的教学方案。在环保领域,大数据可以帮助我们更好地了解环境污染的情况,从而制定合理的治理方案。

总之,大数据已经成为时代的潮流,对于社会发展和个人生活都起到了重要的推动作用。对于大数据的深入思考和理解,有助于我们更好地把握和利用数据,发现新的需求和机遇。希望未来大数据的应用能够更好地服务于人类的发展和进步。

大数据运维工程师岗位的工作职责概述

职责:

2、负责内部大数据自动化运维以及数据化运营平台开发工作;。

4、深入理解数据平台架构,发现并解决故障及性能瓶颈,打造一流的数据平台;。

5、持续的创新和优化能力,提升产品整体质量,改善用户体验,控制系统成本。

6、善于表达、理解客户数据服务需求,具备数据需求转化落地能力。

任职要求:

1、大学本科及以上学历,计算机或者相关专业;。

2、深入理解linux系统,运维体系结构,精于容量规划、性能优化;。

4、具备很强的故障排查能力,有很好的技术敏感度和风险识别能力;。

5、能够承受较大的工作压力,以结果和行动为准则,努力追求成功;。

7、熟悉分布式系统设计范型,有大规模系统设计和工程实现的了解者优先。

8、具有运营商流量数据加工处理经验者优先。

相关范文推荐
  • 11-01 优秀深刻的心得体会(模板22篇)
    写心得体会可以帮助我们发现自己的优势和不足,为个人成长提供指导。这些心得体会都是作者自己对一段经历的真实感悟和思考,希望可以给大家带来一些启示和思考。
  • 11-01 最优我为同学点赞初一(汇总22篇)
    优秀作文需要有丰富的语言和表达工具,使文章更加生动有趣,让读者流连忘返。通过阅读这些优秀作文范文,我们可以了解到不同风格和题材的作品,拓宽我们的文学视野。
  • 11-01 优质廉洁于心个人体会(汇总15篇)
    心得体会是对某一事物、经历或学习过程中获得的体验和感悟的总结和归纳,可以帮助我们更好地理解和应用所学知识。心得体会范文1:通过这次工作经历,我深刻地认识到团队合
  • 11-01 专业宿舍隔离心得体会大全(19篇)
    心得体会是我们从实践中汲取的智慧财富,可以为我们今后的发展提供指导。接下来,我们一起来欣赏一些精彩的心得体会范文,从中学习他人的优点和特点。第一段:背景介绍宿舍
  • 11-01 实用二年级我想养一只小动物(汇总15篇)
    优秀作文不仅要有文采和修辞的技巧,更要有真实的情感和深刻的体验。小编为大家整理了一些优秀作文范文,希望能够为大家提供一些写作的参考和指导。我想要一只猫,因为它看
  • 11-01 最新饲料原料销售心得(模板18篇)
    写心得体会是加深对所学知识的理解和应用的一个重要方式,有助于我们学以致用。以下是小编为大家整理的心得体会范文,供大家参考和学习。在这里看到的贴子很多,的确,有的
  • 11-01 2023年政治心得体会高中范文(17篇)
    写心得体会时,应注意语言的准确性和文字的流畅性,以便于让读者更好地理解和接受。以下是一些经典的心得体会范文,希望可以给大家提供一些写作的灵感和思路。
  • 11-01 优质身心健康心得大全(18篇)
    心得体会可以让我们更加坚定自己的方向和目标,为未来的发展做好准备。通过阅读以下心得体会范文,我们可以从中找到共鸣和启发,加深对于某一主题的理解和思考。
  • 11-01 最热小学生健康体会和感悟(模板16篇)
    年终总结时,写下自己在工作岗位上的心得体会,对未来有很大的启示作用。以下是小编为大家收集的心得体会范文,仅供参考,希望对大家在写作过程中有所启发。健康对于我们每
  • 11-01 2023年舞蹈招生活动方案(通用21篇)
    活动方案需要结合实际情况和目标需求,具有可操作性和可执行性。活动方案A:以团队合作为主题的拓展训练,旨在提升团队成员的沟通合作能力和解决问题能力。活动时间:__

猜你喜欢

热门推荐