六年级教案的编写要考虑到学生的学习特点,因材施教,激发学生的学习兴趣和学习动力。通过阅读一些六年级教案范文,我们可以了解到教案的结构和编写要点。
人教版六年级数学教案全册2
单元目标:
1、理解百分数的意义,了解它在实际生活中的应用,会正确地读、写百分数。
2、能够进行小数、分数和百分数的互化。
3、理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。
4、在理解、分析数量关系的基础上,使学生能正确地解答有关百分数的问题。
单元重点:
百分数的意义,求一个数是另一个数的百分之几的应用题。
单元难点:
比较复杂的百分数应用题。
人教版六年级数学教案全册2
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教具准备:多媒体课件。
教学过程:
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)。
五、课外延伸。
200m跑道如何确定起跑线?
设计意图。
此节知识虽不是很重要,但我独列出来进行教学,主要原因有;。
1、此节知识的综合性很强。
2、密切联系生活,能提高学生的应用能力。
3、培养学生收集数据的良好习惯,重视科学性。
人教版六年级数学教案全册2
教学目标:
1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
教学重点:税额的计算。
教学难点:税率的理解。
教学准备:多媒体课件。
教学过程:
一、创设情境。
1、教师课件展示课本中的4件主题图。
2、提问:
(1)这些设施的费用是从哪儿来的?(政府投资的,国家出钱建设的。)。
(2)国家的钱又是从哪里来的?国家的起源主要来自于税收。)。
今天我们就来学习纳税的有关知识。
二、新知探究。
(一)纳税的意义和项目。
1、学生自学98页有关纳税的内容。
讨论(课件出示):
(1)什么是纳税?
(2)为什么要纳税?
(3)你认为国家的哪些事是国家用税款做的。
(4)你对纳税人有什么看法?
(5)税收有几类?
(6)什么叫应纳税额?
(7)什么叫税率?
2、汇报:
(1)纳税是根据国际税法的有关规定,按照一定的比例把集体或个人收入的一部分缴纳给国际家。
(2)税收是国家收入的主要来源之一。
(3)公路的建设、医院、学校、国防科技等都是国家用税款做的。
(4)依法纳税是每个公民应尽的义务。
(5)税收主要分为消费税、增值税、营业税和个人所得税几类。
(6)缴纳的税款叫做应纳税额。
(7)应纳税额与各种收入的比率叫做税率。
3、试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
(二)税款计算。
1、出示例5(课本99页)。
一家大型饭店十月份的营业额是30万元。如果按营业额的5%。
缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
2、理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
3、要求“应缴纳营业税款多少”就是求什么?
4、让学生独立完成?教师巡视,小组内讲评。
30×5%=1.5(万元)。
答:十月份应缴纳营业税约为1.5万元。
三、当堂测评。
练习二十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
学生独立完成,教师巡视。
四、课堂总结。
1、这节课有什么收获?
2、“培养纳税意识、从我做起”我没应该做些什么?
设计意图:
1、从生活情境中来,到生活中去。这节课的开始我先展示了四副图,让学生初步感知税收的来源。在总结课堂时又把学生引入生活,做的学以致用。
2、先学后教,当堂测评。让学生体会知识的形成过程,了解并解决问题。测评使教师掌握教学实况。
教学后记:
苏教版六年级数学全册教案例文
教学内容:
比较正数和负数的大小。
教学目的:
1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。
3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
重点难点:
负数与负数的比较。
教学过程:
一、复习。
1、读数,指出哪些是正数,哪些是负数?
2、如果+20%表示增加20%,那么-6%表示。
二、新授。
(一)教学例3。
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3。
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察。
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4。
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
四、全课总结。
1、在数轴上,从左到右的顺序就是数从小到大的顺序。
2、负数比0小,正数比0大,负数比正数小。
五、布置作业。
《家庭作业》第2页的练习。
人教版六年级数学教案全册2
稍复杂的“求一个数是另一个数的百分之几”
教学目标:
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
教学准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、新知探究。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。
3、学生自主解决“实际早林比计划增加了百分之几”的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法二:14÷12≈1.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?
(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)。
三、当堂测评。
1、练习二十二第1、2题。
四、课堂质疑、谈表现。
这节课都学到了什么?
还有什么不懂的?
自己表现得又怎样?
相对自己说些什么?
设计意图。
紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。
教学后记。
人教版六年级数学教案全册2
单元目标:
1、通过实例,认识扇形统计图的特点,知道扇形统计图可以直。
观的反映部分量占总数的百分比,能从扇形统计图读出必要的信息。
2、充分利用学生已有的知识经验,通过与所学过的条形统计图。
的特点和作用的对比,体会扇形统计图的特点和用途。
3、在学习中,应该使学生体会到,各种统计图有不同的特点,
可以从不同的角度反映数据的特征。
单元重点:使学生掌握扇形统计图的特点和作用。
单元难点:
1、巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。
2、综合运用相关知识解决生活实际问题。
人教版六年级数学教案全册2
教学目标:
1、让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。
2、综合运用相关知识解决生活实际问题。
3、通过活动,使学生认识到数学应用的广泛性;同时促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。
教学重难点:
巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识。
教学准备:
多媒体课件。
教学过程。
一、明确问题。
提问:妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益最大?
解决几个很关键的信息:本金、可存款年限以及资金用途。
二、收集信息。
通过去银行咨询以及查阅相关规定的方式获取信息:
1、人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率。
2、教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。
3、国债也是免征存款利息所得税,有三年期和五年期的……。
三、设计方案。
根据上述收集到的信息,让学生小组合作设计具体的储蓄存款方案。
1、将定期储蓄存款的方案填在课本111页第一张表格。
2、其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格。
3、每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
四、选择方案。
从上述各种可行的方案中选取受益最大,即最优化的方案进行合理存款,并计算出到期后总共的收入。
可能的方案主要有以下几种:
1、教育储蓄存六年。
2、先买三年期国债,到期后再买三年期国债。
3、先买三年期国债,到期后再存三年期教育储蓄。
4、先买五年期国债,到期后再存一年期教育储蓄。
五、课外测评。
帮爸爸、妈妈合理存款。
设计意图:
这是一节实践性、实用性很强的课。教学中我注意做到以下几大:
1、重视信息的收集,方案的设计。充分把学生的自主能动性体现出来。
2、注重比较,让学生通过具体分析得出结论。
3、注重教学的实践指导。
课后小记:
人教版六年级数学教案全册1
单元目标:
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。
单元重点:
分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
第一课时:分数乘整数。
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教具准备:多媒体课件、
教学过程:
一、复习引入。
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?9个11是多少?8个6是多少?
(2)计算:
++=++=。
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究。
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、课件出示例1。
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的。
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
2/11+2/11+2/11=。
2/11×3=。
(3).分数乘以整数的法则。
a.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)。
b.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)。
c.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、教学例2。
(1)出示×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:a、先约分再计算;b、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)。
1.看图写算式。
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)。
四、学生课堂自评。
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计。
分数乘以整数。
意义:求几个相同加数和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11×3。
=2×3/11。
=6/11。
教学后记。
第二课时:一个数乘分数。
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教具准备:多媒体课件。
教学过程:
一、复习引入。
1、计算下列各题并说出计算方法。
×××。
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新知探究。
1、课件出示教学目标。
理解一个数乘分数的意义。
掌握分数乘以分数的计算法则。
学会分数乘分数的简便计算。
2、教学例3。
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出×这个乘法算式表示“的是多少?”
(3)根据直观的操作结果,得出×=,根据刚才操作的过程和结果推导出计算方法:×==。
(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4。
(1)引导学生分析题意,根据“速度×时间=路程”的数量关系列出算式:×。
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫。
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)。
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)。
3、观察下面各题,先说说运算顺序,再进行计算。
二、新知探究。
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(课件出示)。
(1)+×(2)×-。
(3)-×(4)×+。
2、复习整数乘法的运算定律。
(1)乘法交换律:a×b=b×a。
乘法结合律:(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×40.36×101。
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)。
(3)各四人小组汇报讨论和计算结果。
4、教学例6。
(1)课件出示:××,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)。
(2)课件出示:+×,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为×4和×4都能先约分,这样能使数据变小,方便计算)。
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、课堂检测。
练习三的第一题,第三题。
(1)先让学生观察题目中的已知数的特点,想想怎样做简便?应用。
了什么运算定律。再独立完成练习。教师巡回指点,发现存有问题。
(2)小组内评比,解决疑难问题。
(3)教师讲解疑难。
四、课堂自我评价。
每个学生对自己这节课的表现进行自我评价,并提出问题。
设计意图。
体现学生学习的主动性和自主性。这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。
教学后记。
第五课时:练习课。
第六课时:解决问题(一)。
求一个数的几分之几是多少。
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新知探究。
(一)课件出示自学目标。
1、通过学习掌握求一个数的几分之几是多少的应用题的解。
题方法并会分析数量关系。
2、知道解这类应用题的关键是什么?
3、知道如何找单位“1”。
(二)、教学例1。
1、课件出示自学提示。
(1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的”。
(2)、结合线段图理解题意,找到解题思路。
(3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(4)、在分析题意的基础上,学生独立列式、计算。
2、学生根据提示自学。
全班交流汇报:
2500×=1000(平方米)。
3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
三、当堂测评。
练习四第2题、第3题。
学生独立完成,教师巡回指点,照顾差生。
小组内订正后。
四、课堂总结。
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)。
设计意图:
本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。
由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。
教学后记:
第七课时:练习课。
第八课时:解决问题(二)。
稍复杂的“求一个数的几分之几是多少”的问题。
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量是多少。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去。(2)用去一部分钱后,还剩下。
(3)一条路,已修了。(4)水结成冰,体积膨胀。
(5)甲数比乙数少。
2、口头列式:
(1)32的是多少?(2)120页的是多少?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新知探究。
(一)教学例2。
1、课件出示自学提纲:
1)画出线段图,分析题意,寻找解题方法。
2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。
2、学生汇报:
解法二:80×(1-)=80×=70(分贝)。
3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从。
总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的。
几份之几是多少的方法求出这个部分量。
4、巩固练习:p20“做一做”
(二)教学例3。
1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)。
2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。
3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75×=75+60=135(次)。
解法二:75×(1+)=75×=135(次)。
4、巩固练习:p21“做一做”(列式后让学生说说算式各部分表示什么)。
三、当堂测评。
练习五第2、3、4、5题。
1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,
谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。
2、小组间解决疑难,全班汇报,教师讲评。
四、谈收获、找疑难。
这节课你有什么收获?还有什么不懂的吗?
设计意图:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。
教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
教学后记:
第九课时:练习课。
第十课时:倒数的认识。
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数。
的方法。
教学难点:掌握求倒数的方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1、口算:
(1)××6××40。
(2)××3××80。
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识。
二、新授。
1、课件出示知识目标:
(1)什么叫倒数?怎样理解“互为”?
(2)怎样求一个数的倒数?
(3)0、1有倒数吗?是什么?
2、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)。
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。
3、教学求倒数的方法。
(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
6=。
4、教学特例,深入理解。
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)。
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)。
5、同桌互说倒数,教师巡视。
三、当堂测评。
1、练习六第2题:
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
3/5×()=()×4/7=()×5=1/3×()=1。
四、课堂总结。
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图。
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
第十一、十二课时:整理和复习。
人教版六年级数学教案全册2
教学目标:
1、使学生理解并掌握百分数和小数互化的方法,能正确地把分数、小数化成百分数或把百分数化成分数、小数。
2、在计算、比较,分析、探索百分数和分数、小数互化的规律的过程中,发展学生的抽象概括能力。
3、通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
教学重点:
掌握百分数和分数、小数互化的方法。
教学难点:
正确、熟练地进行百分数和分数、小数的互化。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)。
1.百分数的意义是什么?
2.把下面的小数化成分数,并说一说是怎样化的?
0.451.20.367。
3.把下面的分数化成小数,说一说是怎样化的?
4.写出下面各百分数。
百分之十六百分之七十二点五。
百分之一百八十百分之五百。
2.550.481.2510.3。
个别学生口答。
二、新知探究。
1.教学例1。
(1)出示例1:把0.24、1.4、0.123化成百分数。
(2)引导学生思考:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
0.24==24%。
1.4====140%。
0.123===12.3%。
(3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(引导学生归纳出小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。)。
(4)说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
(5)完成第80页“做一做”第(1)题。
2.教学例2。
(1)出示例2:把27%、135%化成小数。
(2)引导学生思考:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
27%==27÷100=0.27。
135%==135÷100=1.35。
(4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)。
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。
(6)完成第80页“做一做”的第(2)题。
3.引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
4.教学例3。
(1)出示例3:春蕾小学的一项调查表明,有蛀牙的学生人数占全校学生人数的20%,没有蛀牙的学生人数占80%。
(2)引导学生:百分数是分数的一部分,可以写成分数形式。请大家运用过去所学过的知识,试着把上面几个百分数改写成分数。
(3)根据学生回答,板书:
20%==80%==。
(4)想一想:2.5%怎样化成分数?(如果百分数的分子是小数的,可以根据分数的基本性质,把分子、分母同时扩大相同的倍数,使分子变成整数后,再约分。)。
(5)完成p81“做一做”第1题。
5、教学例4。
(1)学生通过小组自学讨论,找出将分数化成百分数的方法。
(2)小组汇报,并举例说明。(分子除以分母,除不尽时,保留三位小数,也就是百分号前保留一位小数)。
(3)完成p82“做一做”第1、2题。
三、当堂测评。
1、练习十九第1、2题。
2、练习十九第3题。
学生独立完成,教师巡视,学生汇报交流。
四、课堂总结。
这节课有什么收获,还有什么不懂的?
设计意图:
百分数和小数的互化,我并没有直接给出互化的方法,而是让学生自己探索,通过观察例题,再结合“做一做”,让学生在观察比较中发现互化的规律,从而找出快捷的互化方法。百分数和分数的互化这部分内容与百分数和小数的互化编排类似,因此我放手给学生,让他们通过自学、尝试、实践,掌握百分数与小数互化的方法。同时,通过对方法的探索、分析、比较和总结,培养学生思维的灵活性和抽象概括能力。
教学后记。
人教版六年级数学教案全册2
单元目标:
1、知识与技能。
(1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
(2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。
2、过程与方法。
解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、情感、态度与价值观。
(1)、培养学生的逻辑推理能力。
(2)让学生体会到数学问题在日常生活中的应用。
单元重难点:
尝试用不同的方法解决“鸡兔同笼”问题。
人教版六年级数学教案全册2
教学目标:
1、认识扇形统计图的特点和作用。
2、能看懂并能简单地分析扇形统计图所反映的情况。
教学重点:
看懂并能简单地分析扇形统计图所反映的情况。
教学难点:
看懂并能简单地分析扇形统计图所反映的情况。
教学准备:多媒体课件。
教学过程:
一、创设情境。
教师出示课本第106页的主题图(投影出示)。
1、观察主题图的内容。
提问:主题图上都画了哪些运动项目?
2、收集和整理数据,统计全班最喜欢的各项运动项目的人数,描述制成条形统计图和折线统计图方法。分别展示在黑板上。
3、这两种统计图有什么特点。
如果要清楚的了解各部分数量同总数之间的关系,我们可以选用扇形统计图来表示。同时课件出示。
二、新知探究。
(一)扇形统计图的特点。
1、教师提问。
(二)观察条形统计图,你从中得到了哪些有用的信息?
(三)从条形统计图中,还有哪些信息不容易表示出来?(引发学生思考,从而发现条形统计图不容易看出各部分量与总量的关系)。
(四)生成扇形统计图。引导学生观察从扇形统计图中,你得到了哪些游泳的数学信息?(学生甘居直观观察,发表见解)。
(五)根据统计图上表示的情况,你对我班同学有哪些建议?
(六)回顾知识生成,归纳扇形统计图的特点和作用。
(七)“做一做”:自主看图,说一说,你从图中得到了哪些有价值的数学信息?(分析后根据题意自主计算,全班核对)。
三、当堂测评。
1、练习二十五第1题:自主看图,说一说李明同学一天的作息安排是否合理,从中你能提出哪些合理化建议。(引导学生说说怎样安排时间才合理,才能做到劳逸结合)。
2、练习二十五第2题:自主看图,说一说从图中得到哪些信息,在小组内交流。(使学生体会到父母的辛苦和对自己的爱,激发学生对父母、对家庭的爱)。
四、课堂总结。
学生总结、比较扇形统计图和条形统计图及折线统计图相比有何特点。
设计意图:
课后小记:
六年级数学全册教案
(1)学生在小组内通过相叙述,质疑问难等方式回忆概念的意义。
(2)学习复习完后各组互派代表相查概念的掌握情况,并向老师汇报抽查结果。
2、梳理知识网络。
(1)小组活动。
师:从同学们反馈情况来看,各小组这些复习概念较好,但数的整除里知识之间存在什么联系和区别呢?请同学们动手整理一下。
(2)对比交流。
抽一小组在黑板上整理,然后各小组表示。
师:通过展示,你们认为哪种观点有道理呢?
各小组进行了充分的讨论后,都说出了道理。
下面看到老师这里也有一个网络图。
师:通过网络图更清楚地知道,在整除的前提下产生了一对概念倍数、约数、倍数下面又产生了公倍数,最小公倍数的概念,约数下面又产生了公约数,最大公约数的概念;从分析自然数的个数又引入了质数合数的概念;能被2、3、5整除的数一定是2、3、5的倍数,从能被2整除的这个角度,出现了奇数偶数概念。公约数只有1的两个数叫互质数,所以互质数与公约数有联系。
苏教版六年级数学教案
使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。
小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。
今天,我们继续进行整理和练习。
1、根据下面的条件,说说数量间的相等关系。
(1)师傅每小时加工的零件比徒弟的3倍少18个。
(2)一堆黄沙运走了30车后还剩下16吨。
(3)一条围巾的价钱比一副手套价钱的2倍多25元。
2、在括号里填上含有字母的式子
(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。
(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。
1、求x的值
(1)三角形面积275cm。 (2)长方形周长9m。
第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。
第(2)小题
先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。
学生列出的方程可能有以下几种情况:
2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2
问:这几个方程哪些你会解了?请你说说应怎样解?
(对于有困难的学生,教师要多加关注,注意个别辅导。)
交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。
指名3位学生分别板演。再集体交流。
2、第6题、第7题、第9题、第10题
让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。
3、第8题
先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?
再让学生解答问题,然后说说自己有什么感想。
学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。
再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。
通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?
六年级数学全册教案
生:40位同学。
师:40位同学又分5个学习小组,哪位同学能用数的整除的知识说说40与5的.关系?
生:40能被5整除。
生:5是40的约数。
生:40和5的最小公位数是40,最大公约数是5。
生:整除能被2、3、5整除的特征,倍数、公倍数、最小公倍数、约数、公约数、最大公约数、质数、合数、质因数、分解质因数、变质数、奇数、偶数。
人教版六年级数学教案
教学内容:
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣。
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用excel自动生成扇形统计图)。
喜欢的项目。
乒乓球足球跳绳踢毽其他人数。
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课。
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
喜欢的项目。
乒乓、球足球、跳绳、踢毽、其他。
人数。
128569。
百分比。
30%20%12.5%15%22.5%。
【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。
三、合作交流,探究新知。
1.认识扇形统计图。
(2)乒乓球的30%又表示什么?
预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。
(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)。
(4)根据学生回答完成扇形统计图。
(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)。
(6)想想各个扇形的大小与什么有关系?
(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。
2.理解扇形统计图的特征。
(1)看图说说,在这幅统计图中你还可以知道哪些信息?
预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。
(2)说说这样的统计图有什么优势?
预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。
(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。
【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。
3.尝试练习。
出示教材第97页“做一做”的内容。
(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)。
(2)说说从图上你得到了哪些信息?
(3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。
六年级数学全册教案
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、初步印象。
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)。
2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、交流和汇报。
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、举例说明进一步明确特征。
教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?
(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)。
5、运用知识进行判断。
下面哪些图形是圆柱?哪些不是?说明理由。
6、制作圆柱。
人教版六年级数学教案
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:
负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-85.6+0.9-+0-82。
2、如果+20%表示增加20%,那么-6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3――两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出―1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和―1.5绝对值相等。
同时,还应补充在数轴上表示分数,如―1/3、―3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“―2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“―2”的位置要走到“―4”,应该如何运动?如果他想从“―2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决―2―1;2+1;―4―(―2);3―(―2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4――薄书读厚、厚书读薄。
薄书读厚――负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄――无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较―8和―6大小时是用“86,所以―8。
六年级数学全册教案
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
负数的意义和负数的读法与写法。
理解0既不是正数,也不是负数。
多媒体课件。
教师讲授、合作交流。
一、复习导入。
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知。
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
引导学生交流:吐鲁番盆地比海平面低155米。
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。
三、运用新知,课堂作业。
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结。
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业。
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识。
正数:20、22、14、+8844.43…。
0:既不是正数也不是负数。
负数:-2、-30、-10、-15、-155…。
六年级数学全册教案
根据课本第9页至第10页教学内容进行设计。
1、知识目标:结合欣赏与绘制图案的过程,体会圆在图案设计中的作用能用圆规设计简单的图案。
2、能力目标:在设计图案的活动中,进一步体会圆的对称性等特征。
3、情感目标:厂家图案的美,发展想象力和创造力。渗透“化曲为直”的数学思想。
结合欣赏与绘制图案的过程,体会圆在图案设计中的作用并能设计简单的图案。
在设计中,进一步体会圆的对称性等特征。
教学挂图。
两先两后学导法。
(一)引入课题。
这节课,我们将结合欣赏与红制图安排过程,进一步巩固对所学图形特征的认识。
(二)欣赏图案。
1、看一看:出示课本的教学挂图,让学生认真观察。
3、欣赏:老师出示教学挂图,学生欣赏美丽图案。
(三)设计图案。
1、涂一涂。
(1)指导学生完成课本第9页中的涂一涂的第1题。
(2)指导学生完成课本第10页中的涂一涂的第2题。
2、做一做。
(1)指导学生完成课本第10页做一做中的第1题。
学生完成设计任务后,老师组织学生进行全班展示,交流。
(2)指导学生完成课本第10页中做一做的第2题。
(四)巩固练习。
先让学生自学课本第10页数学万花筒中的内容,再让学生按照图示的方式试一试,画出一个圆。在此基础上,组织学生进行全班展示和交流。
(五)全课小结。
今天你有什么收获?
六年级数学全册教案
教材第118页总复习第1——5题。
1、理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。
2、掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。
3、掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。
概念和计算方法。
掌握解决分数乘,除法问题的`思路和方法。
将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。
师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。
1、主持人持知识问题卡提出问题,分别指名回答。
分数乘法的意义是什么?与整数乘法相同吗?
分数除法的意义是什么?与整数除法相同吗?
分数乘法的计算法则是怎样的?
什么叫倒数?怎样求一个数的倒数?
分数除法的计算方法是怎样的?
2、主持人持难点问题卡提出问题,指名回答。
分数乘、除法的关系是怎样的?
分数除法的计算具体要注意几点?
0有倒数吗?为什么?1呢?
3、教师组织学生活动。
计算。
3/4×2/5=2/3×5/6=7/9×18=3/10÷3/4=5/9÷5/6=。
21÷7/9=3/10÷2/5=5/9÷2/3=6/11÷5/12=。
4、复习比的知识。
第二位主持人提出问题,学生回答。
知识性问题:
什么叫比?比的各部分名称是怎样的?举例说明?
怎样求比值?
比与分数、除法有什么联系?
比的基本性质是什么?怎样化简比?
难点问题:
为什么比的后项不能为0?
求比值与化简比有什么区别?
练习:
3÷4=()/()=()/12=():32=12:()。
说出下面每个比的前项、后项,并求出比值。2:50、6÷0、34/7。
把下面各比化成最简整数比、8:120、25:0、451/4:1/8。
(5)复习解决问题的解题思路和方法。
第三位主持人上场。
怎样解决分数乘除法问题呢?
主持人点4名同学板演教材第118页第3、4、5题。
对4名学生做的情况进行评议。
对比观察第3题第(1)(2)小题。
数量关系式是:原价×1/5=现价。
第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。
学生归纳分数乘除法问题的规律。
单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;
单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。
验证第4、5题。
第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。
第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。
主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。
师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。
三、应用练习。
(1)完成练习二十七第5题。
(2)完成练习二十七第10、11题。
(3)完成练习二十七第7、8题,学生做后汇报思路和方法。
通过这节课的复习活动,你的学习有什么新的收获?