教案是教师在进行教学活动时所做的系统性安排和预先设计,是教师教学的重要工具。想要了解一些优秀的小学教案范文吗?请继续阅读以下的内容,希望对您有所启发。
小学六年级数学《圆的面积》教案
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
多媒体课件一套、圆形纸片。
两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入。
1、幻灯片出示复习题目。
2、激趣导入。
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)。
二、合作探究,推导公式。
1、圆面积定义。
2、圆面积公式推导。
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接。
教师根据学生说的过程,通过课件演示出转化的过程。
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)。
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)。
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)。
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形。
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)。
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)。
三、实践运用,体验生活。
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结。
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)。
已知一个圆的周长,你能计算这个圆的面积吗?
小学六年级数学《圆的面积》教案
在平面图形的学习中圆安排在最后一个,是在学习面积的认识及长方形、正方形、平行四边形、三角形、梯形的基础之上安排的。
本单元安排了圆的认识、圆的周长和圆的面积。《圆的面积》是本单元的一个教学难点,圆是由曲线围成的图形,教材中介绍的把圆通过等分拼成近似的长方形,分的份数越多就越接近长方形,这里体现了极限的思想。另一种思路是在圆内画正内接多边形,使多边形的面积越来越接近圆,这也就是刘徽的割圆术,体现了极限的思想。在这个化圆为方的过程中,加强了转化思想的渗透。与此同时,让学生感受到中国古代的优秀数学成就,增强学生们的民族自豪感。
本课是在学生掌握了面积的含义及长方形等多边形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的。通过课前调查,有20%的同学知道圆的面积公式,但只知道公式却不知道怎么来的,有10%的同学认为知道,但写出的公式不正确。针对以上情况,我把化圆为方定为本课的教学难点,把公式的推导作为重点,学生在自主探究与合作交流发现圆的面积公式。
1、理解圆的面积的意义及公式的推导过程。
2、在自主探究中体验转化思想和极限思想。
3、培养学生独立思考、合作交流的学习方式,学习刘徽、祖冲之勇于探索、严谨治学的科学态度,激发学生对中国传统文化的自豪感。
理解圆的面积公式的推导过程。
化圆为方体会极限思想。
七、
ppt圆片剪刀。
(一)创设情境,引出新知。
课件:小马吃到青草的最大面积是多少?要解决这个问题就是求圆的面积。这节课咱们就来研究圆的面积,揭示课题。
(设计意图:通过本环节帮助学生结合生活实际理解圆的面积的概念,明确本节课的学习任务。)。
(二)回顾复习,总结方法。
1、我们在推导其他图形的面积公式时是怎样研究的呢?复习长方形、平行四边形、三角形、梯形的面积公式推导。
2、前面的学习对研究圆的面积有什么启发吗?
小结:你能把前面学习的方法用到圆面积的研究中,这说明你很会学习。
(设计意图:通过复习找到学生的原有认知,运用正迁移寻找到研究圆面积的方法。)。
(三)尝试转化,推导公式。
1、圆能转化成我们学过的什么图形呢?请你大胆猜测一下。
2、请你先想一想圆能转化成什么图形,然后再动手剪。
活动要求:
(1)圆能转化成我们学过的什么图形?
(2)圆和转化后的图形有什么联系?
(3)通过转化后的图型你能推导出圆的面积公式啊?
提示:先独立思考,然后再和同桌讨论一下。
预设一:圆内正多边形。
1、圆内只剩正方形。
(1)指名说想法。
(2)对于他的想法你有什么想法吗?
2、圆内画正方形。
(1)出示:把圆转化成正方形和4个小部分。
你看前面同学把这4个小部分去掉了,你为什么粘在这了呢?
(2)方法同上,但是在拼成的椭圆形上画正方形。
请第二个同学说一说。
(3)圆内正六边形。
指名说想法。
比较这正四边形和正六边形两种方法,你发现了什么?
想象一下,如果继续分下去,正十二边形、正二十四边形会怎样呢?
(4)介绍刘徽的割圆术和祖冲之。
预设二、沿半经剪。
1、拼成长方形或平行四边形。
(1)展示学生作品。
指名说想法。(分的份数少的)。
比较沿半径分的几种方法:观察一下这几种方法,你有什么想法呢?
(2)渗透极限思想。
如果继续顺着大家的思路往下分的话,想象一下:16份,32份呢?。
出示课件:电脑演示由8等分到32等分。
小结:我们这几位同学沿着半径把圆剪开,因为圆的半径有无数条且相等,所以圆分的份数就有若干份,分的越多拼的图形就越接近长方形。
(3)圆和转化后的图形有什么联系呢,你能独立推导出圆的面积公式。
预设三、展示其他图形。
指名说想法。
1、转化成梯形、三角形。
2、推到面积公式。
小结:你们的想法独具匠心,思维与众不同。刚才我们努力的把圆转化成其他图形,虽然方法不同,但是殊途同归。咱们同学可真了不起,自己推导出了圆的面积公式。
(设计意图:本环节为学生提供独立探究的空间,调动多种感官使学生在动手剪、开口说的过程,体会转化的思想。通过比较、课件演示,渗透极限的思想。)。
(四)应用公式,解决问题。
1、当这个圆的半径是1米时,小马吃草的面积是多少?
2、当这个圆的直径是2米时,小马吃草的面积是多少?
3、当这个圆的周长是6.28米时,小马吃草的面积是多少?
小学六年级数学《圆的面积》教案
初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。
学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。
4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
通过观察操作,推导出圆面积公式及其应用。
极限思想的渗透与圆面积公式的推导过程。
活动一:创设情景,提出问题。
2、圆的面积--含义:圆所占平面的大小叫做圆的面积。
活动二:猜想比较:
出示图。
活动三:自主探究,验证猜想。
1、引导转化:
师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?
2、动手操作:
(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。
操作引导:
a、剪--怎样剪?剪成几份?
b、拼--怎样拼?拼成什么?
(2)展示交流并介绍,选出最合理的剪法。
(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?
想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)。
(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。
3、自主推导。
(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。
(2)学生展示、介绍自己的推导过程。
(3)教师板演圆面积的推导过程。
4、情景延续:
(1)如果绳长为5米,计算圆的面积和周长。
(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?
5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)。
活动四:实践运用,体验生活。
1、量出自己带来的圆形物体的直径,并计算出面积。
2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。
活动五:全课小结。
通过本节课的学习你有哪些收获?
小学数学圆的面积教案
1.求下面各圆的面积,只列式不计算。(cai课件出示)。
2.测量一个圆形实物的直径,计算它的周长及面积。
3.课件演示:用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)。
小学六年级数学《圆的面积》教案
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
一、创设情景,明确目标。
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法。
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)。
师:它们的面积公式分别是怎样得到的?(学生答略)。
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路。
(学生回答,师板书)。
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)。
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)。
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识。
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r。
师:直径是10米行吗?(指名汇报)。
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径。
师出示深化题,学生练习。
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
小学六年级数学《圆的面积》教案
1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
理解和掌握圆面积的计算公式的推导过程。
圆面积计算公式的推导。
一、创设情境,提出问题。
(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)。
生:
1、羊走一圈有多长?
2、羊最多能吃到多少草?
3、羊能吃到草的最大面积是多少?
二、引导探究,构建模型。
a:启发猜想。
师:羊吃到草的最大面积最大是圆形:
1、这个圆的面积有多大猜猜看;
2、试想圆的面积和哪些条件有关?
3、怎样推导圆的面积公式?(生试说)。
b:分组实验,发现模型。
学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:
1、你摆的是什么图形?
2、你摆的图形与圆的面积有什么关系?
3、图形各部分相当于圆的什么?
4、你如何推导出圆的面积?
请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。
三、应用知识,拓展思维。
1、师:要求圆的面积必须知道什么?
2、运用公式计算面积。
b完成课后“做一做”
c一个圆的直径是10厘米,它的面积是多少平方厘米?
d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)。
测量物直径(厘米)半径(厘米)面积(平方厘米)。
3、应用知识解决身边的实际问题(知识应用)。
四、归纳总结,完善认知。
今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?
小学数学面积教案
1、借助方格纸,能直接判断图形面积的大小。
2、通过交流,知道比较图形面积大小的基本方法。
3、体验图形形状的变化与面积大小变化的关系。
重点:面积大小比较的方法。
难点:图形的等积变换。
(一)新课教学
1、小组讨论:比较平面图形面积的大小。
2、小组内观察书中p16页的13幅图形面积。
3、你是怎么知道的,用哪种方法判断的?
5、判断方法:直接比较法、平移法、数方格法、拼凑法、割补法。
(二)练习:练一练p17
1、下面哪些图形的面积与图1一样大?(用分割和平移法来判断)
2、 3题(用拼凑法来判断)
3、 4题(用割补法来判断)
(三)总结
比较图形的面积
直接比较法
平移法
数方格法
拼凑法
割补法
本节课我是按照学生自学的形式开展的。学生通过观察、比较总结出图形间的关系,能判断出图形面积的大小。但用的方法最多的是数方格、平移和割补,学生掌握的情况一般。
数学圆的面积教案【】
《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。
学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
cai课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
一、尝试转化,推导公式。
1.确定“转化”的策略。
预设:引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。
同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)。
跟圆形有什么关系呢?预设:引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。
一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
六年级数学圆的面积教案
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法。
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)。
(1)与同桌说一说你是怎么估的。
(2)汇报,
(3)老师引导有没有更好的方法。
2、探索圆面积公式。
(1)学生操作。
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)。
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公。
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会。
小学数学面积教案
教学目标:
1、通过练习,能较为熟悉地掌握周长和面积的计算,会进行单位名称的填写。
2、在学习解决问题的过程中,感受数学与生活的联系,表达在解决问题过程中的收获和体会。
3、通过反复练习,使学生在交流中增强应用数学的意识。
教学重点难点:
巩固长方形、正方形的面积计算。
教学资源:
投影仪、小黑板。
教学过程:
一、做练习八第1题。
1、出示题目,齐读要求,让学生实际指一指,摸一摸。
2、你能估计出课桌面的周长和面积吗?
3、同桌合作完成。
4、反馈交流。
二、做练习八第2题。
1、出示题目:
在括号里填上合适的单位名称。
(1)课桌长106()。
(2)一张邮票的面积是6()。
(3)一座塔高36()。
(4)一个房间地面的面积是14()。
2、让学生先独立完成后全班交流。
3、根据学生的作业情况,明确选择长度单位还是面积单位,再作出判断。
三、做练习八第3题。
1、先让学生独立算一算,填一填。
2、再指名说一说周长、面积的计算方法。
(板书)。
长方形的周长=(长+宽)×2正方形的周长=边长×4。
长方形的面积=长×宽正方形的面积=边长×边长。
强调:要求长方形的周长、面积必须知道它的长和宽;要求正方形的周长、面积必须知道它的边长。
四、做练习八第4题。
1、出示题目,让学生同桌讨论:这题该怎样计算?
2、全班交流。
3、提问:单位之间是怎样换算的?
五、做练习八第5题。
1、出示题目,让学生仔细看图和题目。
2、让学生判断要求的是面积还是周长。
3、学生独立完成。
4、交流时要求说说是怎样想的。
六、全课。
作业:完成练习册。
小学生数学日记:圆的面积
老师给我们上课,总喜欢让我们边玩边学。在快乐中学到知识,学的虽然与以前一样,但我们却很高兴,老师想是一位仅仅比我们大一些的大孩子,让我们觉得他不再是严肃的数学老师,而是一位可爱又调皮的孩子,上起课来无忧无虑,一道道枯燥无味的数学题如今跳动了起来。像一道道美食诱惑着我们,我们则是一只只大馋虫,诱惑面前想尽办法吃掉美食。数学是一块巨大的磁石,我们则是一块块小金属片被他牢牢贴出。
不可思议的数据。
今天,我偶然地在一本书上见到了这样不可思议的数据:“一张厚度为0.01厘米的纸对折30次之后的厚度竟然比珠穆朗玛峰还要高呢?”
这个数据无论怎么听都觉得太“荒.唐”了一点。毕竟是一张薄薄的纸,通过对折真能超过珠穆朗玛峰吗?但很多意想不到的事情都有可能发生,所以只有通过计算,这一切的谜底才能揭晓。
随即,我便把0.01厘米连续乘以2,一共30次,得到10737418.24厘米。接着,我又把珠穆朗玛峰的高度8848.13米转化为884813厘米,通过比较,很明显能够看出对折30次之后的纸张的厚度的确胜过了珠穆朗玛峰的高度,而且还是后者的10多倍。
其实,像这样的惊人的数据在平常的生活中处处存数学在,只要你有一双善于发现的眼睛。
学游泳。
今天,我缠着哥哥教我学游泳,忙于学习的哥哥拗不过我的纠缠,就提出了这样的要求:“给你一把20厘米长的尺子,在5分钟内计算出客厅地面的面积,如果你能办到,我就教你学游泳。”“哼!这不是刁难人吗?”我大声的抗议。哥哥笑着说:“没办法,随便你,测不出来就不带你去游泳。”
为了学游泳,我认了。可是用那小小的尺子一点一点的测量着客厅的长,而且要在5分钟内测出面积,真的好难!哥哥在一边幸灾乐祸的说:“小弟啊,五分钟可是很快的呀。”
我心里真是又气又急,这一急可真急出办法了,我想起老师教过我们的步测的方法。于是我就用步测的方法去测量,我沿着客厅的长来回走了三次,分别走了8步、10步、9步,这样平均一下,客厅的长就是9步,我用同样的方法测出宽是7步,然后我再用小尺测量了一下自己一步的长度,我也反复测了三次,求出平均值为60厘米。这下我就求出了客厅的长是9×60=540厘米=5。4米,宽为7×60=420厘米=4。2米,现在客厅的长和宽都知道了,那么客厅的面积就是:5。4×4。2=22。68平方米。
我把自己的思考过程和结果告诉了哥哥,哥哥很吃惊的看着我说:“小弟,你还真行啊,咱们客厅的面积是24平方米,你算得基本正确,最主要是你能想出这样的方法来,真是了不起!”
迷惑人的数学题。
粗心的人往往会忽略“空小船”,就是忘了要有一个撑船,那么每次只能乘4人。这样37人减去一位撑船的同学,剩36位同学,36除以4等于9,最后一次到对岸当船夫的同学也上岸4,所以至少要走9趟。
有趣的数学实验。
今天,妈妈给我讲了一个有趣的数学故事。
故事里说:有一个猪妈妈带着三个猪宝宝去买花。一枝花20元,猪妈妈要买60支花。于是,猪妈妈问三个猪宝宝:“我们要买60支花,20元一支,那一共要多少元?”最大的猪宝宝说:“20乘60等于1200元,所以要花1200元!”第二个猪宝宝说:“不对!不对!是二个十乘六个十等于十二个十,就是1200元!”最小的猪宝宝接着说:“我想,你们两个都是对的,只是说法不同,其实都一样。”“没错!”猪妈妈赞扬道。
到了绑花时间了,最小的猪宝宝抢先问:“现在要帮花了,12支花绑在一起,可以绑多少束?”猪妈妈没出声,大家只能摇头说不会了。过了一会,最大的猪宝宝叫道:“1200除以12等于100,所以可以绑100束花。”
“虽然我们绑完了,可是我们还要送花给20个老爷爷,每个老爷爷分几束呢?”猪宝宝们说。过了30分钟,猪宝宝们才说:“哦!我们知道了,10020=5,所以每个老爷爷分5束!”
猪宝宝们把花给了老爷爷,老爷爷连忙说谢谢,猪宝宝们和猪妈妈都很高兴。
听完这个数学故事,我就更喜欢数学了,也加强了我学好数学的信心!
数学史上的明珠。
在悠久的数学史上,曾经出现过许多数学神童。那是我们学习的榜样,更是数学界中的焦点人物。他们为研究数学知识奉献出了自己的一生。
谷超豪,我国著名的数学家,中国科学院院士,复旦大学著名教授。24岁时蜚声数学界,名为《经典场——米尔斯扬》的研究论文作为专著出版。
你听说过“歌德巴赫猜想”吗?它是数学王冠上的一颗明珠。我国在“哥德巴赫猜想”上的研究已经达到了世界领先地位,而进行这项研究的人就是我国著名的数学家陈景润,他在20世纪国际数学界占有重要地位。
他(她)们都是数学界中的皎皎者,正因为有了他(她)们的奉献,才更激发了人们对数学的热爱。相信我们凭着对数学的热爱,也能搬动数学上的大山,也能为国家奉献出自己的力量。所以,我们从现在起,就要为了祖国的繁荣富强,立大志,树理想,勤奋地学习!
美丽的小区。
为了解决问题,我进行了调查和测量,发现小区南北长200米,东西宽80米,200*80=16000(米)这样一算,小区占地面积就解决了,大约是16000平方米。
第二个问题每栋楼的户数,就拿我家住的6号楼来说吧!楼高25层,两个单元,两户一个单元,户数是25*2*2=100(户)。7号楼和6号楼一样也是100户,4、5号楼是17层的,每栋楼应有17*2*2=64户;1、2、3号楼是小区最矮的楼了,每栋楼只有11*2*2=44户。
第三个问题把刚才算的数加起来就行了;100+100+64+64+44+44+44=460(户)。
俗话说麻雀虽小,五脏俱全,我们小区绿化、停车场、健身器材、道路一样不少,小区绿化高达30%,平均楼间距40米,银杏树20颗,梧桐树15颗——小区中间还有一个鱼池,每天都有鱼儿在里面游动,可以让人放松身心。说了那么多,回到正题上来,我计算过了,平均每栋楼占地570米,七栋楼加起来570*7=3990(平方米)。除楼以外面积应是16000-3990=12010(平方米)。
数学真是太奇妙了,还有许多知识等待我们去探索、发现。
生活处处离不开数字。
吃完饭,妈妈给了我10元钱,让我们去买水果,我和琪琪姐姐到了超市阿姨告诉我们,苹果3.2元一斤,梨2.5元一斤。琪琪姐说;买2斤苹果,剩下的钱买梨,你算一下能买多少梨吧?我小声地算起来。
10(-3.2x2)÷2.5=(10-6.4)÷2.5=3.6÷2.5=1.44,很快我知道结果了,我们还可以买1.44斤梨。
别看那么简单,我们的生活处处离不开这小小的数字呢!
五年级日记。
文档为doc格式。
小学数学课《圆的面积》说课稿
今天我说课的内容是九义教材人教版六年制小学六年级上册67——69页的内容:《圆的面积》。
本节课是本册书第四单元第三节课。这节课是在学生充分认识了圆的各部分特征和掌握了圆的周长的计算的基础之上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱、圆锥的表面积及体积打基础。
学生已经具有一定的学习能力,有进一步解决实际问题的欲望,学生已经掌握了用转化法推导几何图形面积公式的方法,通过本课的学习继续培养学生的动手操作能力、分析能力、探究能力以及迁移类推能力。本课学生通过合作探究应该能很顺利地掌握本课内容。
知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。
能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。
情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
这节课,我以"猜想--估算--合作探究----验证"为主线,引导学生主动参与,在小组合作、动手探究的过程中学习,使学生在愉悦中体验成功的乐趣。
由于学生初次接触曲线图形,很难理解圆等分后的转化过程和"极限"的概念,所以我确立本课的教学重难点是:圆面积公式的推导过程和圆面积的计算方法。
为了突破教学难点,我引导学生在合作探究中经历观察、操作、推理、想象的过程,又借助教具和挂图直观性,在演示中进一步观察、体会,从而使不同层次的学生都得到了相应的发展。
1、创设情境,导入新课。
新课伊始,出示帮助公园的叔叔阿姨怎样计算这块圆形草坪的占地面积的问题的挂图。启发学生针对这个问题进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题。此处改变了原来设计的单调的复习,融新知于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。
2、合作学习,探究新知。
为了帮助学生开展探究活动。
第一步,我给每个小组发一张方格图,让学生在图上随意画一个圆,并估算出圆的面积。学生汇报后,激励学生评价哪种估算方法最好。这个环节目的就是使学生在估算的过程中自然而然地形成化曲为直的转化思想。
第二步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。在这个环节,我让孩子们用桌子上的卡纸,做个实验,在硬纸画一个圆,把圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片,拼一拼,可以同桌合作,看能发现什么?一会向老师汇报。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。
第三步,学生汇报探究结果之后,为了使学生更直观、更形象的理解"极限"的概念,我适时进行教具演示,引导学生观察:把圆平均分成两份、四份、八份、十六份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。就这样,抽象难懂的"极限"的概念就在教具直观、形象的演示中迎刃而解了。
然后,我又用教具演示拼成的长方形的长和宽与圆的各部分间的关系,学生很快地通过长方形面积的计算推导出圆面积的计算公式,从而顺利地完成知识的迁移。(出示填空练习题)。
在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。
3、巩固练习,拓展延伸。
为了进一步巩固学生对已学知识的理解和圆的面积公式的应用,在练习题的设计上,由浅入深,注重习题的实效性、趣味性。(教学挂图出示)首先让学生计算课前所剪圆形学具的实际面积,与估算结果相比较。然后设计了基本练习题和基本应用题。最后设计了趣味性较强的题:"早上,妈妈让聪聪上学时把牛拴在草地上,下午放学的时候再把牛牵回来,拴牛的绳子长4米,牛吃草的面积有多大?如果牛每小时吃草约8平方米,那么等下午聪聪回来的时候,牛会不会挨饿?如果牛挨饿的话,你有什么好办法解决呢?"故事一出,学生便主动思考,想办法,大大调动了学生的学习积极性,同时又把知识进行了延伸与拓展。
4、巩固自学,提高能力。
在完成练习题后,让学生们看教材68——69页的内容,把不明白的内容和同桌互相探讨,共同解决。
整个教学内容,我本着让孩子们自己动手操作、动脑思考、互相合作、发现问题、分析问题、解决问题的思路去设计,孩子们易于接受,学习气氛良好。加之老师制作的教具和挂图的配合,相信会收到较好的效果。
小学数学《圆的面积》说课稿
尊敬的各位考官,大家好,我是今天的x号考生,今天我说课的题目是《圆的面积》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
本节课选自人教版六年级上册第五单元第三节,主要内容是讲圆的面积。它是在学生掌握了长方形的面积以及圆的的概念和周长之后的继续学习,并且圆是曲线图形,从研究直线图形到曲线图形,对学生来说也是质的飞跃,同时圆的面积这节课也很好的渗透了转化化归的思想。
合理把握学情是上好一堂课的基础,所以我先谈谈学生的实际情况。这一阶段学生的观察和概括能力都已经得到了一定的发展,同时这一阶段的学生还具备活泼好动、注意力不集中的特点,所以我充分利用这一特点,采用灵活多样的教学方法来进行教学。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
掌握圆的面积计算公式,并能利用公式正确解决简单问题。
(二)过程与方法。
通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。
(三)情感、态度与价值观。
感受数学与生活的联系,激发学习兴趣。
根据学生现有的知识和三维目标的把握,我确定了本节课的教学重难点,重点是:圆的面积计算公式。教学难点是:圆的面积计算公式的推导过程。
为了突出重点、突破难点、顺利达成教学目标,本节课我将采用讲授法、问答法、小组讨论等方法来进行教学,让学生带着问题学,在合作交流的过程中得到结论。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课。
在导入环节,我会从生活实例入手,呈现一个圆形的草坪,提出问题:如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。
这样设计的好处:从生活实例入手,一方面能吸引学生的兴趣,另一方面也可以很好的体现数学来源于生活,并服务于生活。
(二)讲解新知。
接下来是探索新知环节,也是本节课的中心环节,为了突出重点、突破难点,我会充分发挥学生的主体作用。先让学生回忆之前所学图形的面积公式的推导过程,如平行四边形,三角形等。学生能够回答出:是转化成已知面积的图形来证明推导的。这时我会发放圆形纸片、剪刀、带有不同颜色的笔等教具,引导学生思考:能否也利用转化思路来求解圆的面积。前后四人为一小组,利用手中的剪刀,四人合作交流,动手剪拼,看能否转化。在此过程中,我会提醒学生注意安全,并下场巡视,然后请各组代表发言表达想法。
在交流过程中,学生可能得到:将圆平均分成4份,但是没有拼成之前学过图形;将圆平均分成8份,拼剪之后得到一个类似平行四边形;将圆平均分成16份,拼剪之后得到一个近似的长方形。但是由于这个拼接过程不像之前的直线图形,所以在学生讨论结束之后,我会采用动画展示将圆平均分成32份、64份、甚至更多份之后所拼成的图形。通过这样直观展示,给学生一个更为明显的印象,学生能更好的理解圆能够转化成长方形这一问题。
这时我会提出以下几个问题来引导学生得出结论,第一:长方形的长和圆的什么是相等的?第二:长方形的宽和圆的什么相等?第三:这两个图形的面积大小有什么关系?通过以上三个问题,学生就能得出圆的面积应该是圆周长的一半乘以半径,进而得出结论。