当前位置:首页>工作计划>圆与圆的位置关系的教案(模板12篇)

圆与圆的位置关系的教案(模板12篇)

时间:2023-12-29 09:06:09 作者:笔砚

教案模板通过明确教学目标、内容、方法和评价等方面的要求,帮助教师科学安排教学过程。接下来,我们一起来看看一份精心设计的教案模板,希望可以给大家一些启发和借鉴。

小学数学《圆与练习》教案数学圆与圆的位置关系视频

1、圆的公式c==()s=()。

2、已知圆的周长,公式求d=(),求r=()。

3、圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。

4、环形面积s=()。

5、用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是()厘米,画出的这个圆的面积是()平方厘米。

6、大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。

7、圆的半径增加1/4,圆的周长增加(),圆的面积增加()。

8、一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。

9、将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长长10厘米,这个长方形的面积是()平方厘米。

10、在一个面积是24平方厘米的正方形内画一个最大的圆,这个圆的面积是()平方厘米;再在这个圆内画一个最大的正方形,正方形的面积是()平方厘米。

11、大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。

12、大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是()平方厘米。

二.判断。

(1)通过圆心的线段,叫做圆的直径。()。

(2)周长是所在圆直径的3倍多一些。()。

(3)半径是直径的一半。()。

(4)任何圆的圆周率都是3.14。()。

(5)半圆的周长等于圆的周长的1/2加直径的长,所以半个圆的面积等于圆面积的1/2加直径的长度。()。

(6)圆的半径扩大5倍,圆的`面积也扩大5倍。()。

(7)半径是2厘米的圆,周长和面积相等。()。

(8)半圆形纸片的周长就是圆周长的一半。()。

(9)把半径3厘米的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长长。()。

三、应用题。

1、一个环形的外圆半径是8分米,内圆半径5分米,求环形的面积?

4、

(1)轧路机前轮直径1.2米,每分钟滚动6周。1小时能前进多少米?

圆与圆的位置关系教案

1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆;能应用圆的知识解释一些日常生活现象。

2、使学生在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

在观察、操作、画图等活动中感受并发现圆的有关特征,能借助工具画图,能用圆规画指定大小的圆。

教学难点:能应用圆的知识解释一些日常生活现象。

教学准备:多媒体课件,一些圆形物体和圆形纸片,圆规。

学具准备:圆规、学具以及收集的一些圆形物体的图片。

课前谈话:羊吃草的故事(猜谜)。

有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。

先请同学们猜测一个字。再猜两个字的水果名。

师:我们来看一看羊吃草的.范围有多大?

(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆。)。

一、谈话导入。

1、对于圆,同学们一定不会感到陌生吧,生活中,你们在哪儿见过圆形?

4、有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起去探索圆的奥秘,好吗?(板书课题:圆的认识)。

二、动手尝试,认识圆的特征。

(一)、初步认识圆。

1、说了这么多圆,看了这么多圆,你想不想亲自动手画一个圆?先动脑筋想一想,再用你手头的的。(问题就只工具动手画一画。(学生动手画圆)。

2、引导学生交流所画的圆,并让学生说说是怎样画要停留在借助什么来画的,不要作过深的追问)。

3、比较:看看你所画的圆,和以前学过的平面图形有什么不同?

交流:以前所学的图形都是由线段围成的,而圆是由曲线围成的。

(二)、用圆规画圆。

1、刚才有同学用圆规画出了一个圆,其他同学会画吗?请拿出准备的圆规,在白纸上画一个圆。

交流:谁来说说用圆规是怎样画圆的?或者说在画的过程中要注意些什么?(指名交流,引导学生说出圆规的使用方法。)。

要点:针尖要戳在纸上,另一只脚是笔,两脚随意叉开。

3、全班画一个直径是4厘米的圆:我们把两脚叉开4厘米来画一个圆。(画好的同学拿出剪刀,把画的圆剪下来。)。

(三)、圆各部分名称。

1、圆和其它图形一样也有它各部分的名称,请同学们打开书,把例2的一段话认真地读一读。

2、反馈交流:你知道了关于圆的哪些知识?

(圆心、半径、直径,分别用字母o、r、d表示。)。

根据学生回答,教师在黑板上板书。并要求学生在自己的圆上将个部分标一标、画一画。

3、完成“练一练”第1题。

出示3个圆,分别判断,说说是怎样想的。

(四)、圆心、半径、直径的关系。

1、学到现在,关于圆,该有的知识我们也探讨地查差不多了。那你们觉得还有没有什么值得我们深入地去研究?其实不说别的,就圆心、直径、半径,还藏着许多丰富的规律呢,同学们想不想自己动手研究研究?大家手头都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请大家动手折一折、量一量、比一比、画一画,相信大家一定会有不小的收获。另外,我还有两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在自备本上,到时候一起来交流。第二,实在没啥研究了,老师还为每个小组准备了一份研究提示,到时候打开看看,或许会对大家有所帮助。

学生小组活动。

2、反馈交流:

要点:

(1)、在同一个圆里可以画无数条半径,无数条直径。(强调在同一个圆里)。

(2)、在同一个圆里,半径的长度都相等,直径的长度也都相等。(强调在同一个圆里)。

(3)、同一个圆里半径是直径的一半,r=2/d;直径是半径的2倍,d=2r。

(4)、圆是轴对称图形,有无数条对称轴,这些对称轴就是圆的直径。

还有其他的发现吗?学生可以自由说。

3、完成练习十七第1题。

学生自由填表,反馈交流。

三、应用拓展。

完成“练一练”第2题。

(1)、读题,说说是怎样理解题意的。(注意说清直径是5厘米,圆规两脚叉开即半径应该是2.5厘米)。

(2)、学生画一画,反馈交流。

四、全课总结。

通过大家的探究,我们已经获得了许多关于圆的知识,现在让我们再来看看刚才的画面(课件再次显示)。

这不就是圆的魅力所在吗?

五、布置作业。

初三数学圆的性质及直线和圆的位置关系复习教案

教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)。

二.定义、性质和判定。

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

初三数学圆的性质及直线和圆的位置关系复习教案

尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析。

教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析。

在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

陪养学生观察、分析和概括的能力;

(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:

直线与圆的位置关系教案

20xx.11.17早上第二节授课班级:初三、1班授课教师:

过程与方法目标:

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题。

调动学生积极主动参与数学活动中.。

探究新知。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

布置作业。

1、课本第101页7.3a组第2、3题。

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

《圆与圆的位置关系》的教案

一、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

二.教材的重点难点。

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

三.在教学中如何突破这个重点和难点。

解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,

3.直线l与圆o相离=dr。

(上述结论中的符号“=”读作“等价于”)。

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

四、教学程序。

[提问]通过观察、演示,你知道直线和圆有几种位置关系?

[讨论]一轮红日从海平面升起的照片。

[新授]给出相交、相切、相离的定义。

[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

[巩固练习]例1,

出示例题。

(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

由学生填写下例表格。

公共点个数。

圆心到直线距离d与半径r关系。

公共点名称。

直线名称。

图形。

补充练习的答案由师生一起归纳填写。

教学小结。

直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

《直线和圆的位置关系》教学反思

"思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。

在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:

开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。

在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。

在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:

1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。

3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现"授人以鱼不如授人以渔"。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

直线和圆的位置关系教学反思

本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。

讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。

本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。

重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。

教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。

点和圆的位置关系教学设计

本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中引导学生由图形联想到数量关系,即有点和圆的位置关系联想到点到圆心的距离与半径的大小关系。我是分两步的得出的:

第一步让学生从图形上直观的认识点和圆的三种位置关系,第二步引导学生从数量上判断图形位置,是为了让学生更好的体验数形结合思想。数量关系的探索是这节课的一个重点内容,也是这节课的.难点所在。为解决这个问题,在课前布置了学生进行预习,预习内容为以下6点:

2、经过一个点可以作几个圆?

3、经过两个点可以作几个圆?圆心有什么特点?

4、经过不在同一直线上的三点可以作几个圆?

5、过在同一直线上的三点能作圆吗?如果不能如何证明。

6、过在不在同一直线上的三点能作圆吗?如果能,能做几个,如果不能,请说明理由。

通过课堂上的提问反馈,可以感受到学生通过预习,在自主学习的基础上能更好的理解知识,从而进一步提高课堂听课的效率。

新课标指出,自主探究、动手实践、合作交流应成为学生的主要学习方式,教师应引导学生主动的从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。本节课中“不在同一直线上的三点可以确定一个圆”让学生经历了循序渐近的探究过程,即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。

通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,从而提高了课堂效率;同时,通过对这节课的反复推敲设计,我也深切感受到对教材研究的重要性。

点和圆的位置关系教学设计

一、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

二、教材的重点难点。

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

三、教学重点和难点。

解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,

3.直线l与圆o相离=dr。

(上述结论中的符号“=”读作“等价于”)。

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

四、教学程序。

[提问]通过观察、演示,你知道直线和圆有几种位置关系?

[讨论]一轮红日从海平面升起的照片。

[新授]给出相交、相切、相离的定义。

[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

《点与圆的位置关系》教学反思

《点与圆的位置关系》教学反思本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。教师如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中点和圆的位置关系让学生经历了由图形关系联想到数量关系、由数量关系联想到图形关系的过程,是学生真正理解点和圆的位置关系与点到圆心的距离和半径之间关系的等价。

2、经过一个点可以作几个圆?

3、经过两个点可以作几个圆?圆心有什么特点?

4、经过不在同一直线上的三点可以作几个圆?

5、过在同一直线上的三点能作圆吗?如果不能如何证明。

6、经过三角形三个顶点的圆即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。

归纳:点与圆有哪几种位置关系?点与圆的位置关系可以根据什么来判定?通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,提高了课堂效率;同时,通过对这节课的反复推敲设计与反思,我也深切感受到对教材研究的重要性。

点和圆的位置关系教学设计

《点与圆的位置关系》是人教版九年级上册第二十四章第二节,这一节分为两个部分(即点与圆的位置关系和外接圆、外心),本节课主要学习了点与圆的三种位置关系。在理解圆的定义的基础上展开了点与圆的位置关系教学,通过圆的定义得到了圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径,每一个圆都把平面上的点分成三部分:圆内的点、圆上的点和圆外的点。学生理解透彻,掌握较好。

反思教学方法:

本节课我结合九年级学生的认知特点,从学生已有的生活经验和知识出发,让学生通过自己归纳,、总结,并且主动的研究,从而学会知识。学生先学,先练,老师后讲,后教,促使他们在自主探究的过程中,真正理解和掌握数学知识,数学思想和数学方法,同时获得广泛的数学经验,效果较为理想。

反思目标完成情况:

目标1:学生能够清楚的口述点和圆的位置关系以及相对应的点到圆心的距离和半径的大小关系。

目标2:通过动手探究,知道了不在同一条直线上的三个点可以确定一个圆。但有十个同学因动手作图能力差,最后实在别人的帮助下完成的自学任务,还有三个同学竟然没有作图工具。

目标3:掌握了三角形的外接圆和外心概念,都能准确的找见三角形的外心并作出三角形的外接圆。

每个环节缺少相对应的练习题是这节课最大的失败之处,因为课前考虑到学生的动手探究能力差,耗时,为了完成教学任务,因此没有设置相应的练习题。特别是在“探究1”环节,学生虽对点与圆的位置关系掌握较好,但在一般的习题中,多考查由“点到圆心的距离”推出“点和圆的位置关系”,反推得难度相对于顺推稍高,所以恐学生解决问题存有困难,且解题过程的书写存有问题,在课后辅导中要进行训练。

相关范文推荐
  • 12-29 大学生学习强国心得体会(精选16篇)
    心得体会是一个反思和总结过去的机会,可以让我们更好地认识自己和他人。这是小陈分享的一篇旅行心得体会,欢迎大家一起来欣赏和讨论。进入“学习强国”平台,摘自孔子《论
  • 12-29 青年节志愿者活动策划书(优秀17篇)
    在活动策划中,我们需要根据不同的活动类型和参与人群的特点来进行个性化的设计和安排。活动策划要注重细节和执行力,以下是一些活动策划实施的注意事项和技巧,希望能够对
  • 12-29 我的大学规划演讲稿分钟演讲(优质16篇)
    大学规划包括选择专业、选择学校、设定学习目标、确定个人发展方向等。接下来,我们一起来看看一些成功的大学规划案例,从中获取灵感和借鉴。尊敬的老师,亲爱的同学们:当
  • 12-29 学习第三次中央新疆座谈会精神心得体会(汇总16篇)
    心得体会是对过去经验的深入思考和有益总结,可以帮助我们更好地规划未来的发展方向。在下面,小编为大家整理了一些优秀的心得体会范文,供大家参考和学习。9月12日,第
  • 12-29 大学生学习计划书(热门18篇)
    学习计划能够帮助我们合理分配学习时间,避免临时抱佛脚的情况发生。学习计划可以帮助我们评估和反思学习过程,发现自身不足,进而进行调整和改进。那么我们该如何写一篇较
  • 12-29 校长高考百日誓师大会发言稿(优秀15篇)
    发言稿的语气要得体,既要正式庄重,又要亲切自然,以赢得听众的好感。参考以下的发言稿,可以了解到不同场合下的发言稿写作要点和技巧,以此提高自己的发言能力。
  • 12-29 以Y理论为撰写小论文(专业21篇)
    范文范本是一种宝贵的学习资源,可以帮助我们了解不同领域的写作方式和技巧。请大家浏览一下这些总结参考范例,找出其成功之处和值得借鉴之处。在大学期间,撰写理论文稿是
  • 12-29 农业银行业务工作心得体会(精选16篇)
    工作心得体会的撰写可以帮助我们更好地认识自己,发现自己的潜力和不足。请大家认真阅读以下工作心得体会范文,相信会对大家的工作学习有所裨益。在中国的金融行业中,农业
  • 12-29 大学生的社会实践活动总结(实用16篇)
    社会实践能够培养个人的团队协作能力,提高组织能力和领导力。以下是小编为大家收集的社会实践总结范文,希望对大家有所帮助。漫漫七月,酷热难耐。在这长长的夏日假期里我
  • 12-29 党支部党日活动方案党日活动方案(精选12篇)
    活动方案的成功与否直接关系到活动的效果和参与者的满意度。以下是小编为大家精心准备的活动方案范文,供大家参考和借鉴。同志们:根据会议安排,下面由我代表耒阳市教育局

猜你喜欢

热门推荐