每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
两位数乘两位数教学设计人教版(六篇)篇一
1.知识与技能目标:
(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法
启发诱导法、讲授法、探究法
四、学习方法
练习法、探究法、小组交流法、观察法
五、教学过程:
(一)引入新课
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
两位数乘两位数教学设计人教版(六篇)篇二
1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。
教学重点:
教学难点:
形成综合运用数学知识解决问题的能力。
教学准备:
小黑板
教学设计
一、情境导入
二、目标导学
1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
三、独立解答、小组合作解决问题
师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)
生一:48根灯条,每根71个灯泡
生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯
生三:a型车限乘25人,b型车限乘8人,a租4辆型车正好。
(通过让学生说数学信息,培养学生完整、正确表达的好习惯)
师:根据你发现的信息能提出哪些数学问题?
(学生各抒己见)
师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。
出示四个问题:
1、一共有多少个灯泡?
2、29个同样的广告灯一天的租金多少元?
师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。
(学生独立解答,教师巡视大约10分钟)
师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。
(学生小组交流,教师巡视,看看各小组讨论情况)
师:各小组都讨论完了,下面请小组的同学上来汇报。
小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。
师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。
四、自主练习
教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)
两位数乘两位数教学设计人教版(六篇)篇三
1、联系学生生活实际,为新知识的学习提供丰富的现实背景。
2、重视学生已有的知识和经验,注意体现算法的多样化。提倡学生个性化的学习,变学方法为主动的建构方法。
3、渗透估算意识。
2、让学生经历计算方法的探索过程,培养学生初步的独立思考,合作交流,交流和逐步解决数学问题的能力。
3、让学生体验数学学习的快乐。
教学重点:口算方法的掌握和熟练应用。
教学难点:使学生掌握口算两位数减两位数的计算方法,并能正确计算。培养学生解决问题方法多样化,提高思维的灵活性。
本节课我主要以学生熟悉的生活经历为教学情境,自然提出数学问题,在口算的过程中交流不同的算法,让学生体会口算的多样性,同时也比较、发现最优化、最简便的计算方法。学生通过交流,讨论明确算理。在练习、解决问题中体会不同情况下采用不同的计算方法。
我将教学过程大致分为四个环节进行:
(一)复习旧知,铺垫新知
(二)创设情境,导入新课
(三)独立思考,探索新知
(四)合作交流,巩固练习
第一个环节,复习旧知,为学习新知识做铺垫,使学生很快进入有目的的探索状态。
第二个环节,创设情意,先让学生仔细观察,寻找有价值的数学信息,提出用减法计算的问题。这样,有助培养学生的观察能力和发现问题能力。接着,让学生解决问题,自然而然地运用两位数减两位数的口算,展示不同的计算方法。此时,教师应充分尊重学生,承认学生的个体差民,树立学习的信心。学生通过自己独立思考、解决问题,让学生体会到运用数学知识的快乐,体验成功的乐趣。
第三个环节,为了更好地体现了学生是学习的主体,激活学生的创新思维。让学生通过独立思考,寻找出最简便的口算方法,让学生在感受数学与生活密切联系的同时,体验寻找的喜悦。
第四个环节,让学生在合作交流学习中体会怎么在做题时会又对又快,而且这种形式学生更便于接受。学生对所学知识进行了巩固练习。
板书设计简洁明了,体现了本课的重难点。
两位数乘两位数教学设计人教版(六篇)篇四
射阳县特殊教育学校 陈 玮
课前构思:
1、知识与能力:使学生在经历两位数加两位数口算方法的探索和交流过程中,掌握其口算方法,并在解决问题过程中,体验数学与生活实际的密切联系,进一步发展解决问题的策略。
2、过程与方法:在复习两位数加一位数,整十数加整十数口算的基础上,经历探索,交流两位数加两位数的口算方法过程。教学方法:合作式学习、探索式学习、小组活动式学习。
1、重点:使学生熟练地掌握两位数加两位数的口算方法。
2、难点:理解两位数加两位数的算理,进一步强化计算方法,逐步提高计算能力。
一、游戏导入
(一)猜歌名
大屏幕上有4组题目,每组有2个算式,只要你回答对了,后面就会有一段音乐,这4组算式都回答出来,并且猜出是什么歌曲,闯关就成功了!成功了会有惊喜哦!
这是什么歌?(郊游)
(二)说数的组成1.()个十和()个一组成45.2.31由()个十和()个一组成。
二、探索新知
(一)创设情境,揭示课题
同学们成功闯关,那这节课老师就要带同学们去郊游了,在郊游之前,我们要来说一说,出去郊游的时候要注意些什么呢?(生自由发言)
我们要去什么地方郊游啊? 二年级这么多人怎么去呢?
嗯,鸟岛在湖中央,所以我们要坐船去,而且老师已经把船都租来了。每条船限乘68人,我租来两条船,怎样乘船比较合理呢?(两个班级合乘一条船)你想让哪两个班合乘一条船?(讨论后设计以下三种方案)
(1)23+31
(2)23+32
(3)23+39
32+39
31+39
要想知道哪种方案最合理,就必须算出每种情况下的乘船总人数,如果总人数接近或等于68人,才能既舒服又省钱得到达目的地。
(二)教学不进位加 现在让我妈一起来验证吧!
我们先来看第一种方案:23+31怎样计算?自己先想一想,然后和你的同桌讨论一下,说一说你是怎么算的。(1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。(既把一个数拆为整十数和一位数,再和另一个数分别相加。由于计算顺序不同,所以有以下4种算法。))
23+31=54,二(1)班和二(2)班可以合乘一条船。
(三)教学进位加
那我们再来看看二(3)班和二(4)班可不可以合乘一条船呢?
32+39怎么计算?((1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。
3、凑整十数的方法。)
(四)小结计算方法
通过刚才的计算,谁能说一说:两位数加两位数口算的计算方法。
(五)分组验证
下面请同学们用你们学到的方法计算方案二和方案三的算式。请第一组验证方案二,第二组验证方案三。
1、23+31 红灯
2、23+32
红灯
3、23+39 绿灯
32+39
31+39
31+32
三、应用与拓展
(一)乘船问题解决了,快让我们排队上船。船开起来了!
我们一路欢歌笑语,很快来到闻名中外的鸟岛。鸟儿们正列队欢迎我们呢!
快向他们问好吧!
导游告诉我们,在湖中有28种鸟,在湖面的岛上有65种鸟,我想知道一共有多少种鸟呢?(用前面学过的口算方法试一试)
(四)通过今天的学习,你学会了什么?
学生在已有一位数加一位数、整十数加整十数、两位数加一位数的口算基础,口算两位数加两位数口算对学生而言并不难,本节课的重点就是意在创设情境在激发学生兴趣的基础上,让学生通过自主探究、合作学习,明确算法的多样性,并能通过比较得出最佳的方法,在多种形式的练习中进行巩固,达到能够准确而熟练地进行计算。
在情境创设方面,我始终以学生最感兴趣的旅游为切入点,从出发到结束把数学知识始终贯穿于始终。而数学最注重的说算理,所以在教学中我始终把说理放在首位,让学生既知其然,更要知其所以然。同时我也极力做到把学习的主动权交给学生,让学生在自主探究、合作学习中学到新知。
不足之处,练习题设计还缺少点梯度,这是我今后对应注意改进的地方。
两位数乘两位数教学设计人教版(六篇)篇五
杨惠萍
教学目标:1.掌握两位数乘以两位数的不进位乘法的笔算方法(列竖式计算)。
2.理解用第二个因数的十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
3.培养学生良好的书写习惯,树立细节决定成败的思想。 教学重点 1.掌握两位数乘以两位数(不进位)的笔算方法,并会正确计算。2.解决乘的顺序和第二部分积的书写位置问题。
教学难点 理解笔算两位数乘以两位数(不进位)的计算原理。
教学过程:
一. 创设情境,复习旧知
师:昨天去书店买书,每套书有14本,那么买3套有多少本? 生:14×3=42(本)
师:那老师如果买10套书,又有多少本? 生:14×10=140(本)
二、探索新知,明确算理:
师:你为什么要这么列?
生:要求有多少本书,也就是要求 12 个 14 是多少。
师:说的真不错,请同学们估算一下,14× 12大约得多少?
生1:我把12估成10,大约 是140本。生2:我把14估成10.大约是120本。生3:我把14和12都估成10,大约有100本。
生:我们都是估小的。
2、师: 14× 12 到底得多少,你能算出准确的答案吗?下面拿出老师给你们准备好的点子图,用黑笔试着在纸上用我们学过的方法来,分一分,圈一圈,算一算。把14× 12的结果写出来。
生:独立思考后在纸上写出得数。
4、师巡视,拿出几个同学的做法并投影。
生 1 :14× 4=56(本)56× 3=168(本)
师:先把12分成3个4,再算12乘4,最后算56乘3,这是一个好方法。
生 2 : 14 × 6=84(本)84×2=168(本)师:这也是一个好方法。
生3:14 ×10=140(本)14×2=28(本)140+28=168(本)师刚才这几位同学都是通过先分后和的方法,把未知的知识转化成已学的知识来解决新的问题。说明同学们都积极动脑思考了,真棒。
生:用列竖式的方法计算。师:这就是我们今天要学习的内容两位数乘两位数的笔算乘法。现在你们在自己的草稿纸上试着列一列。
师:巡视,请几位同学上台板书。
5、师:请你讲讲你是怎么做的?(生讲计算的过程)
师:谁跟他的方法相同?你能再讲一遍吗?
师:我把刚才同学们计算的过程整理出来了,想给同学们演示一遍,让我们一起再回顾一次。
师:同学们真了不起,自己通过计算掌握了两位数乘两位数的计算方法。
三、巩固练习,拓展应用:
1.老师来考察一下你们的掌握情况,让我们看看第一关:巧填数字
3、师:请看第三关:智力冲浪。你们有信心吗?
一本书有300页,如果每天读22页,2周能读完吗?
如果每天读40页,7天能读完吗?
4、师:同学们在这么短的时间里帮村长想出了这么多种方法,真是太感谢了。同时也恭喜同学们顺利过关。
恭喜做对的同学,你们和喜羊羊一起获得了这场智力大比拼的胜利。
四、总结:
生 1 :我学会了用竖式进行笔算乘法。
生 2 :(答略)
师:其实这节课上同学们表现出了求知的欲望和探索的精神,对你们的表现老师非常满意,希望同学们能在生活中做一个有心人。
两位数乘两位数教学设计人教版(六篇)篇六
1、知识与技能目标:
(1)、进行两位数乘两位数的估算、计算、巧算的巩固练习。
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2、过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3、情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
启发诱导法、讲授法、探究法
练习法、探究法、小组交流法、观察法
(一)引入新课
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的`语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)
蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!