教案模板可以帮助教师在教学过程中及时调整教学策略,满足学生的学习需求。接下来将给大家介绍一份经典的教案模板,希望对大家的教学工作有所帮助。
相似三角形的判定方法说课稿
最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。
2013年12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。整个教学过程进展较为顺利,基本完成了教学任务。
在本节课的教学中,我认为以下这几个方面做得较好:
1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。
二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“a字型”图和“x型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。
3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“a字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。
本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:
1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。
2、在证明“a字型”图的结论过程中,没有必要证明de是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。
3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。
4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。
总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。
相似三角形的判定定理教学设计
1.初步掌握三组对应边的比相等的两个三角形相似的判定方法,以及两组对应边的比相等且它们的夹角相等的两个三角形相似的判定方法。
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的'过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性。
3.能够运用三角形相似的条件解决简单的问题。
1.重点:
掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
2.难点:
(1)三角形相似的条件归纳、证明;。
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似。
3.难点的突破方法。
三组对应边的比相等的两个三角形相似,教科书虽然给出了证明,但不要求学生自己证明,通过教师引导、讲解证明,使学生了解证明的方法,并复习前面所学过的有关知识,加深对判定方法的理解。
(2)判定方法。
的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法。
(3)讲判定方法。
要扣住对应二字,一般最短边与最短边,最长边与最长边是对应边。
(4)判定方法。
一定要注意区别夹角相等的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中ssa条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的。
相似三角形的判定方法说课稿
本节课的教学设计主要从以下三个方面来考虑的:
一、尊重学生主体地位。
本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。
2教师发挥主导作用。
在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。
3提升学生课堂关注点。
学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。
相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理,从上下来的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于“两边对应成比例且夹角相等”不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。
相似三角形的判定1说课稿
1、使学生在经历探究相似三角形判定方法的过程中,初步掌握相似三角形的判定定理,理解它的证明方法,初步会运用相似三角形的三个判定定理来解决有关问题。
2、在探究判定方法的过程中,提高学生运用类比方法,猜想命题,再加以证明的研究问题的能力以及增强用化归思想解决问题的意识。
3、通过动手实践、观察、猜想、归纳、等数学探究活动,给学生创造成功的机会,使他们爱学、乐学、会学,同时培养学生勇于探索、积极合作的精神。
重点:
难点:
自主探究与小组合作相结合。
多媒体辅助教学。
本节课我们继续研究:相似三角形的判定(二)。“你认为我们可以从哪儿入手研究呢?”引导学生类比全等三角形的判定方法进行猜想。
引导学生利用相似三角形与全等三角形的区别与联系,把上述全等三角形判定定理中比值为1改成比值为正数“k”,就可得到相似三角形的判定方法,得到猜想。利用上述思路,证明猜想,得到判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。简记:两角对应相等,两三角形相似。判定定理2、3的证明过程由学生仿照定理1的证明完成。请二人上黑板板演。猜想证明完毕,让学生观察、对比三个定理的证明方法,在证明过程中是否有共性?证法的本质是什么?让学生深入思考,感受三个判定定理的证法本质是一样的,即:将相似三角形的判定利用平移的方法,化归为预备定理的形式,最终转化为判断两个三角形全等,区别就在于全等的证明方法不同。
《等腰三角形的判定》评课稿
我有幸听到了学科带头人沈老师的一堂课——等腰三角形的判定,受益匪浅。
从沈老师这里,我第一次听到了课堂教学“经济化”的教学思想,让我耳目一新。我仔细一想,沈老师的教学思想正是符合我们现在所提倡的课堂教学的有效性。
在课上沈老师把课本的引例、等腰三角形的判定的验证和课本例1融为一体,把例1的内容改编成一个问题情景,达到了创设情景的目的,并在解决问题的过程中完成了对“判定”的证明,接着简单明了的提出“判定”,整个过程自然、流畅,既节约了时间,又引出并验证了本堂课的重点——等腰三角形的判定,可谓是经济化的教学。
一堂课要确定一个中心知识点,并围绕该中心展开教学,把重要部分知识在课堂上先解决,其它题型之后再一一解决,做到一步三回头。
一堂课45分钟,时间不多,但老师要教给学生的东西却可以很多。但并不是老师教给学生多少,学生就能接受多少。重要的是,老师要努力使学生真正掌握自己教给他们的每一个知识。因此课堂传授知识“宜精不宜多”,要有一个教学核心,教师一定要以此为中心开展教学。就如沈老师的课,在“判定”引入之后,就讲了四个应用“判定”的例题,达到让学生不停应用“判定”并熟悉“判定”的目的,这也是本节课的一个重点,让学生尽快会应用“判定”解决问题。
注重学法指导,强调做完题后的反思,培养学生解决问题的能力。由于八年级学生正在从实验几何向论证几何的过渡,证明题对逻辑思维能力的要求有所提高,学生对于证明的表述和书写都还处在懵懂时期,这时需要老师的正确引导和对他们进行学法指导。沈老师非常注重这一点,课堂上不断鼓励学生“说”出证明过程,调动更多的学生来参与,并交给学生一种书写证明过程的方法——怎么说的怎么写,再慢慢把罗嗦的话省去。我想这是非常符合学生的学习心理的,在教师的正确引导下,学生会在实践中慢慢使自己的表述更加精炼。
这可能比老师直接告诉学生应该怎么做效果更佳。因为学习就是一个循序渐进的过程。
联系自己的实际及七年级学生的特点,在今后的教学中,在以下几个方面首先要采取措施。
从教材的实际出发,理解教材的基本结构,特彻掌握教材的系统性、教材的重难点,努力做到融会贯通,使自己的思想感情与教材的思想感情溶为一体。在此基础上,认真设计教案,使自己的教学更加“经济”。
心理学家认为,人的认知水平可划分为三个层次:“已知区”“最近发展区”和“未知区”。而人的认知水平就是在这三个层次之间循环往复,不断转化,螺旋式上升。根据学生的认知水平,教师要集中的把某块知识教给学生,使他们对这块知识达到“最近发展区”的水平。因此,课堂提问不宜停留在“已知区”,也不能直奔“未知区”,应该在“已知区”与“未知区”之间找提问的契合点。
七年级学生面对课程增多、课堂学习容量加大,顾此失彼,精力分散,听课效率下降,因此要重视听法的指导。七年级学生常常固守小学算术中的思维定势,思路狭隘、呆滞,不利于后继学习,因此要重视对学生的思法的指导。学生是否掌握良好的记忆方法与其学业进步密切相关,七年级学生正处于初级的逻辑思维阶段,机械记忆的成分较多,理解记忆的成分较少,这不适应学习初中数学的新要求,因此要重视对学生进行记法指导。
当教师提出问题以后,学生需要足够的时间去思考。有研究表明,对于低水平的问题,等待时间的增加会导致成绩的下降;而对于高水平的问题,等待时间的增加可以导致成绩提高。所以,等待时间的长短应该与所提的问题的难度相适应,并最终与问题所要实现的目标相应。如果目标是让学生从记忆中检索有关信息,所设计的问题都是有关知识记忆的问题,较短的等待时间是适当的,但如果问题的目的是刺激学生积极思维并创造性地回答问题,那么就应给学生足够的等待时间去产生期待的结果。
相似三角形的判定1说课稿
在前面,学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章研究的问题实际上是在前面研究图形的全等和一些全等变换基础上的拓广和发展。
在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识。在物理中,学习力学、光学等,也要用到相似的知识。因此这些内容也是今后学习所必须德文基础知识。另外,在实际生活中的建筑设计、测量、绘图等许多方面,也都要用到相似的有关知识。因此这一章内容对于学生今后从事各种实际工作也具有重要作用。
学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。“全等”是图形间的一种关系,具有这种关系的两个图形叠合在一起,能够完全重合,也就是它们的形状、大小完全相同。“相似”也是指图形间的一种相互关系,但它与“全等”不同,这两个图形仅仅形状相同,大小不一定相同,其中一个图形可以看成是另一个图形按一定的比例放大或缩小得到,这种变换是相似变换。当放大或缩小的比例为1时,这两个图形就是全等的,全等是相似的一种特殊情况。学生对相似三角形的学习应该是比较轻松的。
教学目标:
根据学生已有的认知基础和教材所处的地位和作用,确定本节课的教学目标为:
1、知识技能掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2、数学思考渗透数学中普遍存在着相互联系、相互转化,使学生感悟类比的数学方法;经历探索两个三角形相似条件的过程,体验画图操作、观察猜想、分析归纳结论的过程;在定理论证中,体会转化思想的应用。
3、解决问题会运用“两个角对应相等的两个三角形相似”的方法进行简单推理。
4、情感态度从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维;通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。
教学重点:
教学难点:
探究三角形相似的条件;运用三角形相似的判定理解决问题。
教法:数学是一门培养人的思维,发展人的思维的重要学科,教学中不仅要教知识,更重要的是教方法。什么样的教法必带来相应的学法。一节课不能是单一的教法,因此,在讲授本节课时,我将采用以下方法进行教学:
(1)类比教学法:类比全等三角形的判定方法——进行探究。
(2)转化教学法:证明相似三角形的判定时,通过作全等三角形,把要证明的问题转化为我们已经解决的问题,从而把问题从未知转化为已知,从复杂转化为简单。
(3)情景教学法:创设问题情境,以学生感兴趣的,并容易回答的问题为开端,让学生在各自熟悉的场景中轻松、愉快地回答老师提出的问题后,带着成功的喜悦进入新课的学习。
(4)启发性教学法:启发性原则是永恒的。在教师的启发下,让学生成为课堂上行为的主体。
相似三角形的判定方法说课稿
4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。
5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。
相似三角形的判定方法说课稿
(2)如果一个三角形的'两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)。
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)。
相似三角形的判定1说课稿
1、经历探索三角形相似的判定方法(两边对应成比例且夹角相等的两三角形相似)的`过程,掌握判定三角形相似的方法。
2、能够灵活地运用两边对应成比例且夹角相等两三角形相似的判定方法解决相关问题。
3、在观察、归纳、测量、实验、推理的过程中,培养学生勇于探索的精神。
重点:相似三角形的判定定理“两边对应成比例且夹角相等的两三角形相似”。
难点:“两边对应成比例且夹角相等的两三角形相似”的证明思路探寻。
(一)直接导入。
简要回顾:上一节课我们已经学习了两角相等的两个三角形相似,今天这节课继续来研究三角形相似的判定。
(二)探究新知。
实验探究一:利用三角形纸片进行探究。
′,使其满足:′的制作。然后可以通过测量角,验证两个三角形是否相似;也可以通过三角形中位线的性质判定所构成的三角形与原三角形是否相似。
实验探究二:利用教具进行探究。
我们发现对应边的比为1:2或2:1且夹角相等的两个三角形相似。那么两边的比值相等且是任意值,夹角相等的两个三角形还是否相似?我们来看几何画板。
实验探究三:利用几何画板进行探究。
问题1:两组对应边的长度发生改变,但比值不变,且夹角相等,两个三角形相似吗?
问题2:两组对应边的比值不变,夹角度数改变,但保持两角相等,这两个三角形相似吗?
结合几何画板可以度量角的大小的功能,可以得出这三种情况两个三角形都是相似的。通过实验我们发现对应边成比例且夹角对应相等的两个三角形相似。这个命题是真命题吗?我们还需要进行推理论证。
论证过程:
由证明两角相等的两个三角形相似的方法,通过类比让学生体会作全等,证明相似遇到的困难。进而引导退一步利用先作相似,再证全等的方法解决定理的证明。
(三)辨析。
设计意图:巩固两角相等的两个三角形相似;两边对应成比例且夹角相等,两三角形相似。以及两边对应成比例且其中一边的对角相等的两个三角形不一定相似。
我们发现两边对应成比例且其中一边的对角相等的两个三角形不一定相似。很多问题是不能只通过观察就可以判断相似,需要我们分析———推理———论证。
(四)典例分析。
设计意图:规范定理的书写格式。请同学们认真仔细找准对应边规范自己的书写格式。
(五)一试身手,勇攀高峰。
利用实时投屏,实现同学互相评价,教师评价和鼓励。我们要善于发现别人的优点,弥补自己的不足,勇攀高峰。
学生讲解。老师归纳:此题三种判定三角形相似的方法都用到了,我们要善于甄别。数学是严谨的学科,要抓住数学本质,善于观察,缜密推理。
(六)小结和作业。
你的收获?知识、方法、思想……。
作业:p78习题,必做题:a组1,2;选做题:b组1,2。
八年级《2.4等腰三角形的判定定理》评课稿
《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。
在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。
本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。
教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。
通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。
文档为doc格式。
相似三角形评课稿
听了吴老师的《相似三角形复习》这节课,被他精湛的教学艺术所深深吸引。吴老师教学设计非常清晰,各知识点分析到位,重点突出,难点突破,由浅入深,层层递进,是一堂非常不错的复习课。
下面就这节课来谈谈我的看法:
吴老师以练习的方式,然后让学生添加相似三角形的条件,并让学生予以证明,从而实现相似三角形的判定与性质数学分类讨论思想的复习,并把复习的主动性给了学生,起到很好的复习效果。
以拼——折——转这几个富有动态的词语分别设计出不同的具有代表性的题型,层层深入,并用几何画板展现动画效果,不仅激发了学生的兴趣,还培养了学生的空间想象能力,为以后的学习奠定了扎实的基础。
在折一折环节中,折出了数形结合思想。例如题:如图,相似三角形纸片的两直角边bc=6c,ac=8c,将直角边bc,使点c落在斜边ab上,折痕为bd,求:cd的长。
引导学生观察在折前后不变的量,和变的量,将数与形结合使答案露出水面,学生求解一点都不困难,达到很好的教学效果。
这是一节不显得枯燥,有声有色的复习课。他扎实的基本功和严谨的教学态度都给我留下了深刻的印象,也让本人对自己的课堂教学引起了反思,并为本人以后的课堂教学提供了很多的好思路,感谢他的精彩课堂。
相似三角形评课稿
李老师非常从容淡定地为我们呈现了一堂精心设计的复习课。我们感受到李老师扎实的教学基本功,在他的引导下,课堂氛围很融洽,李老师恰到好处的解题指导和情感教育又为课堂带来了点睛之笔。李老师的课有许多值得我们借鉴之处,主要体现在以下几点:
一个题目巧妙的复习了相似三角形的四种判定,以正方形为背景,让学生画图操作,科学认证的过程,体验问题的解决过程,以一个基本的“k”字图贯穿整堂课,一题多变,一课一题,减少学生读题的时间,使学生的思维得到更宽、更广、更深的`培养。
学生在动手动脑的过程中,往往会迸发出意想不到的思维火花,学生的思维能力、创新能力得到了提高,更有利于学生的发展。李老师在复习了四种相似三角形的判定方法之后,问:将一块三角尺的直角顶点p放在正方形abcd的对角线bd上滑动,直角一边始终经过点a,另一边与射线cd相交于点e,请画出图形。这样不但培养了学生的直观思维,而且渗透了数形结合、分类讨论的数学思想,让学生学会不遗不漏的解决问题。
“几何画板”实现了图形由静向动的渐变过程。李老师利用几何画板实现数形结合,突破教学难点,大大提高教学效率。在学生画完图形后,李老师提出一个问题:线段pe与pa的数量关系。给学生充分时间思考后,并用电脑测量,让学生直观的进行比较,用数字说话,提高课堂的效率。
个人看法:作为章节的复习课,起点是否放得低些,面向全体让更多的学生都积极参与课堂中来。
三角形相似的判定的教学设计
【过程与方法】。
通过借助三角形全等,特殊三角形,比例的应用探究三角形相似,培养学生的对于前后知识的运用能力和知识迁移能力。
【情感态度与价值观】。
体会数学的特点,了解数学的价值。
二、教学重难点。
【重点】。
【难点】。
知道边角边和边边角在判断上的不同。
三、教学过程。
(一)复习旧知,导入新课。
ppt呈现若干三角形并标注一些边和角(可以出现全等和相似结合一共三个三角形的情形)。
问题1:你能找出其中的全等三角形或者相似三角形吗?能告诉老师你判断的理由?
师生总结:回顾了全等三角形的判断方法,其次就是对于相似三角形有了直观的感知。
问题2:你能记得的全等三角形判断方法有多少?
师生总结:sss,sas,asa,aas。
问题3:你觉得如果要判断两个三角形相似,能用上述的方法吗?引入课题。
(二)结合知识,生成原理。
问题1:结合相似三角形的特征,全等三角形的判定方法,提出你们认为能够证明三角形相似的方法吗?说明理由。
师生活动:sss,sas……从相似三角形的特点,直观上来说都是边的特点。
问题2:sss能够证明吗?你们试着在练习本上画画看。
师生活动:三边成比例能够实现。
(三)动手尝试,深化原理。
问题1:大家能不能结合我们在课堂开始之前从一个三角形出发,在练习本上画一个全等三角形和一个相似三角形,并以前后四人为一小组,相互讨论一下各自的尝试过程,尝试着说明“两边成比例且夹角相等的两个三角形相似”能够证明相似三角形。
师生总结:两边成比例且夹角相等的两个三角形相似。
师生活动:让学生以小组为单位,比拼谁更快更准。
(五)小结作业。
小结:今天你有什么收获?
作业:试一试还有没有其他可能判定三角形相似方法呢?
三角形相似的判定的教学设计
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)。
证明两个三角形相似的判定
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);4如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为:两角对应相等,两个三角形相似.).直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似[2] ;(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
两个全等的三角形全等三角形是特殊的相似三角形,相似比为1:1
任意一个顶角或底角相等的两个等腰三角形两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。
两个等边三角形两个等边三角形,三个内角都是60度,且边边相等,所以相似。
直角三角形被斜边上的高分成的两个直角三角形和原三角形由于斜边的高形成两个直角,再加上一个公共的角,所以相似。
《相似三角形的判定》教学反思
这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。
通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。
在教学后,我觉得有很多需要改进的地方。
1.教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。
2.教学内容还有待于进一步改进。
3.备课时没有考虑学生的实际情况,犯了备课只备教材不备学生的大忌,因此,在今后的教学中要引以为戒。
等腰三角形的判定
本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.
本节课方法主要是“以学生为主体的讨论探索法”。在数学中要避免过多告诉学生现成结论。提倡鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程。
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论出来。如果学生提到的不完整,可以做适当的点拨引导。
(3)总结,形成知识结构。
第12页 。
相似三角形的判定教学反思
主要通过以下三个方面展示出学生的探究性学习:
一、尊重学生主体地位。本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的.眼光看问题,从而提高学习效率,培养学生的思维能力。
二、教师主导地位的发挥。在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。
三、提升学生课堂的关注点。学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。
在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。
相似三角形评课稿
教材内容:人教版九年级,第二十四章第二节“相似三角形的判定一”。
杨凯老师按照新教材的课程标准,自己制作了精美的几何画板。本节是初中数学中非常重要的内容,考试所占的分值也不少。
第一、教学目标明确,新课标理解深刻。本节课主要是让学生掌握相似三角形的判定,关键是让学生能根据平行得出相似来解决实际问题。教学中杨老师始终围绕教学目标举出相似的实例,引导学生不断创新和实践,逐步培养学生解决问题的能力.杨老师善于调动学生的积极性,学生在课堂上能够积极参与,积极参与教学活动,教师的主导作用和学生的主体作用发挥好,达到了预定目标。
第二、教学突出了重点又突破了难点。杨老师通过复习引导及引例题逐层分析,由简到难,多种变式让学生灵活掌握相似三角形的判定方法。恰当的运用现代教学手段,增加了课堂教学的容量,使学生掌握知识更容易。杨老师在教学过程中紧扣目标,内容科学正确,能把握知识和技能的内在联系.
第三、杨老师在教学中对激发学生的学习兴趣方面下了工夫,学生在老师的引导下对相似三角形的找法不断递近,得出了a型和x型,让学生能形象的、快速的找出相似。老师注重培养学生独立思考和创新意识,让学生感受、理解知识和技能产生与发展的过程,在教学中先给出具体的情景,让学生直观感知例题中的数量关系,并进行探究,然后通过思考在老师引导下得出结论。同时,执教者注重学法指导,及时总结规律,让学生学以用。
第四、杨老师的教学过程紧凑合理,导与学有机结合教学程序设计合理。按照复习旧知、教授新课、变式练习、思维拓展、课堂练习、课堂小结、课后作业的教学过程进行教学,师生的配合非常默契,课堂气氛较为活跃,教师对整堂课有清晰的思路。
第五、在教学手段上,杨老师运用了多媒体进行教学,较大地容纳教学内容,扩大教学空间,虽然教学内容很多,但老师却显得轻松,显示出教师教学基本功的扎实。
总之,这节课学生收获颇多,能力有较大提高。我认为这是一节较为成功的初三数学新教材教学课,值得我认真学习。
三角形的说课稿
本节是九年制义务教育实验教材小学数学第八册的教学内容,它包括三角形三条边之间的关系以及部分练习。在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为学生研究三角形的新的特性——任意两边之和大于第三边做好了知识迁移基础。
学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验,为进一步学习三角形的内角和、面积等内容打下坚实基础。
本课的重点是:三角形三边关系的实验与探究,这个关系不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。
本节内容的难点是:利用三角形三边之间的关系解决实际问题,在学习和应用这个关系时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”,而学生的错误就在于以偏概全。
新课标的基本理念要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:
1、使学生知道“三角形中任意两边的和大于第三边”,运用关系解决简单的实际问题;
2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。
3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神。
针对平面几何知识教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,让学生在观察、感知的基础上,动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。
在学法指导上,我将充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,在设计课程方案时,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员等),让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
1、实验法初步感知。每组拿出课前准备好的几组小棒(或者用纸条),进行操作实验,并详细做好记录,填写在统计表中。
2、讨论交流法发现规律。
a、两条边的和大于第三条边就能组成三角形;
b、最长的那条边小于另外两条边的和才能组成三角形;
c、任意两边的'和一定要大于第三条边才能组成三角形;
d、较短的两条边的和大于最长的边一定能组成三角形;
e、两边的差小于第三边也能组成三角形;
只要孩子们能大胆发表自己的见解,不管正确与否,教师都给予鼓励,并集中对以上的几个结论进行点评,对学生的b、c、d、e的回答予以肯定,对a的回答组织学生讨论,分析错误的原因。
3、画图法验证结论学生小组为单位进行第二层次实验:小组内画出3个任意的三角形,用尺去量出三条边的长短,填入表格。
4、应用规律解释“最近”。“为什么小明上学走中间这条路最近呢?”
5、根据本节课的教学目标,我设计了三个层次的练习:
a、基本练习:下列长度的三条线段能否组成三角形?为什么?
(1)8、9、15;(2)9、6、15;(3)9、6、14。单位:(厘米)。
使学生对初步感知的结论有更加深刻的认识。只有让理论与实践相结合,才能学活知识,使知识起到质的飞跃。
c、课堂延伸:画出一个三角形,让学生量出三个角的度数,再让学生量出三条边的长度,试着让学生寻找最长边与最大角、最短边与最小角的关系。
目的是为了体现因材施教的原则,在面对全体的情况下,促进学有余力学生的思维发展。
等腰三角形的判定方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:。
1.在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
2.在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
3.在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。显然,以上三条定理是“三线合一”的逆定理。
4.有两条角平分线(或中线,或高)相等的三角形是等腰三角形。