在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
2023年简易方程解方程教学反思模板篇一
《简易方程》是五年级上册第五单元的知识,是学生在小学阶段第一次系统接触代数知识。这一单元学生掌握的好坏将直接影响到他们初中代数知识的学习。因此,我将其放在十分重要的地位。
《简易方程》是五年级上册第五单元的知识,也是这册内容的重点和难点。本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。很多时候,遇到稍复杂的题,列算式解决时,解题思路常常迂回曲折,很难理解,而列方程解决实际问题,解题思路往往直截了当,降低了思维难度,它让学生从一个简单的思路——找相等关系来解题。所以说,这个单元的知识如何教好,是至关重要的。
第一块,用字母表示数是学生学习代数初步知识的起步。在教学这一部分知识时,要注重学生对数量关系的理解,也就是说要加强学生用含字母的式子表示数量的训练。所以,在这里一定要向学生强调并反复练习用含有字母的式子表示数量,让学生明白以往学习的所有数量关系在用含有字母的'式子表示数量中都能用到。体会到含有字母的式子的数量关系和以前是一样的,只是现在用符号来代替数字了。
第二块,解方程和列方程解决问题。要根据等式的性质来解方程,普通方程学生解起来问题不大,比多比少的方程,学生错误率还是满多的,我要求学生圈出多、少关键字,谁和谁比划出来,写上谁大谁小。“稍复杂方程”把“写关系式”作为教学的重点,耐心地引导学生理解题目的意思,根据题意写关系式,但好几个同学接受起来仍有困难,就算写出了关系式,仍不会列方程,或是写的关系式与列的方程根本是两码事。如何用稍复杂的方程来解决实际问题仍是本单元教学的薄弱点。
学习是个循序渐进的过程,尤其是解方程,所以教学要慢慢来,不用急,有些孩子慢慢来就会了。
2023年简易方程解方程教学反思模板篇二
在通读教参时我初步感受到:简易方程太容易了,学生一学肯定能掌握好。本单元引入等式性质进行教学解方程的方法,简单的一句话,只要记住同加、同减、同乘、同除就行了,这有什么难的。
看来数学不能只站在某一个点上做“井底之蛙”的狭隘的教学,教师不仅仅从本单元、本年级、本学段和小学范畴内分析把握教学内容,更应该从学生发展和为学生发展服务的意识上把握教学内容。
在课堂上学生多次通过观察就发现未知数的值是多少,但却还要把烦琐的过程写出来。
例如:
x+1.2=8,
解:x+1.2-1.2=8-1.2
x=6.8
在写过程时学生习惯根据加、减、乘、除运算之间的关系来写,面对如上的繁杂过程接受的缓慢,无奈。
本单元的教学使我对新教材和新课标又加深了认识,也许当完整的教学完本单元的知识时又会有新的理解和收获。
2023年简易方程解方程教学反思模板篇三
《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在学生学习了用字母表示数和方程的基础上进行教学的,新课程的解方程一改以往的由加减乘除各部分之间的关系的引入方法,运用更能让学生明白的天平平衡的原理来引入,《解简易方程》教学反思。解题的基本原理从未改变——等式的基本性质,即:方程的两边同时加上或减去相同的数,除以或乘以同一个不为零的数,方程的两边仍相等。
这节课内容不是新内容,但方法却是新方法,我认为设计教学时应将“方程的解”和“解方程”这两个概念放到例题1的后面引入,能使学生对概念理解更充分,印象更深刻。
教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程,教学反思《《解简易方程》教学反思》。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。当学生的解题方法得到了教师的肯定,让学生明白这种解题方法的优缺点。培养学生的创新能力和自主学习的能力让学生成为课堂的主体,教师充分发挥主导作用。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。
三是备学生环节出现差错,这部分内容应该不难,但学生的现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。
四是教学内容确定不恰当,本来我是想,上公开课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的方法的解决。由于我班学生是本期从各个地方转来的,基础参差不齐,而且整体水平较差,因此安排两个例题有难度。
2023年简易方程解方程教学反思模板篇四
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=23 24÷x =6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。
2023年简易方程解方程教学反思模板篇五
《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在学生学习了用字母表示数和方程的基础上进行教学的,新课程的解方程一改以往的由加减乘除各部分之间的关系的引入方法,运用更能让学生明白的天平平衡的原理来引入,《解简易方程》教学反思。解题的基本原理从未改变——等式的基本性质,即:方程的两边同时加上或减去相同的数,除以或乘以同一个不为零的数,方程的两边仍相等。
这节课内容不是新内容,但方法却是新方法,我认为设计教学时应将“方程的解”和“解方程”这两个概念放到例题1的后面引入,能使学生对概念理解更充分,印象更深刻。
教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程,教学反思《《解简易方程》教学反思》。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。当学生的解题方法得到了教师的肯定,让学生明白这种解题方法的优缺点。培养学生的创新能力和自主学习的能力让学生成为课堂的主体,教师充分发挥主导作用。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。
三是备学生环节出现差错,这部分内容应该不难,但学生的现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。
四是教学内容确定不恰当,本来我是想,上公开课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的`方法的解决。由于我班学生是本期从各个地方转来的,基础参差不齐,而且整体水平较差,因此安排两个例题有难度。
2023年简易方程解方程教学反思模板篇六
一、感受天平的平衡现象,悟出等式的性质变化。
1、在学习中,我以天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉比较抽象,我引导学生在反复操作中理解加、减一个数的目的和依据。
我在天平的左侧放5克砝码,右侧也放5克砝码。(抛砖引玉)
2、学生亲自动手反复不断的进行操作。(学生动手操作)
在此基础上,我再做进一步的引导。
活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
3、教师:请同学们都想一想,如果天平两侧都减去相同的质量,天平会出现什么现象?你能列出几个这样的方程吗?(学生同桌之间通过充分地交流,反馈交流结果,学生得知,如果我们把天平作为一个等式(当天平平衡时)的话,等式的两边都减去同一个数,等式仍然成立。通过引导,学生能完全得出了等式的性质。最后我们通过学生自己的整理和总结,把以上发现的性质合二为一。得出:等式的两边都加上(或减去)同一个数,等式仍然成立。
二、利用 等式性质解方程-—— 初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
1、从教材的编排上,整体难度下降,有意避开了形如:66—2x=30等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x在后面的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程吗?我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充x在后面的方程的解法。要教他们列方程时怎么避免x在后面这样方程的出现等等。因此,我干脆就又把原来的老方法交给同学们,以便备用或请他们根据具体情况选择适当的解题方法。
3、我个人认为:现行教材的某些地方还有待于进一步的改进与完善。
2023年简易方程解方程教学反思模板篇七
出示例题:6x-6.8×2=20
师:请你观察一下这道方程和我们原来所学的方程有什么不一样?
生:它比原来多了一个6.8×2。
生:它比我们原来所学的方程多了一步运算。
师:你回答的非常好,这个方程比刚才解答的方程要多一步计算,这就是今天要学习的解简易方程。(板书课题)
评析:
“一切真理都要让学生自己去获得,由他重新发明,而不是草率地传递给他。”为此,我在教学中通过让学生对新旧知识进行比较,让他们自己去获取新知。继而在教师的引导下尝试求6x-6.8×2=20的解。
我知道在前面已复习了ax土bx=c的方程,为推导求ax土b=c(b表示两数的积)的方程作铺垫;例题不但承接了上节课的内容,而且引出了本节课的新内容。这两道题,帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作。
教学实录:
师:这道题是6x减去什么的差等于20,你觉得这道题开始要怎样解?
生:应先算6.8×2。
师:为什么要先算6.8×2?
生:因为前面是减法,后面是加法,我们应该按照四则混合运算的顺序先乘后减,所以要先算6.8×2。
生:先算6.8×2就可以使方程变为6x-13.6=20,又回到了我们原来所学的方程。
生:因为在这条方程中6.8×2可以先算出来,所以要先算。
师:这两位同学很会动脑筋也都观察的非常仔细。解这个方程时,按运算顺序能先算的一步就要先算出来,然后再求方程的解,其中又把6x暂时看做一个数。
师:现在就请一位同学上黑板来演示一遍,看这样算行不行?其他同学也请自己在下面试试看。
同学们踊跃地举起了手。
师:你们觉得他做的对吗?做的完整吗?
生:我觉得他做的是对的,我也做到这么多。
同学们都在那里点头称是。
师:再仔细看看!
同学们感到很疑惑,一个个皱紧了眉头。沉默片刻,突然有一只小手举了起来。
生:他的答案是正确的,但是我觉得他做的不完整。
学生被这个说法吸引了起来,顿时三三两两地举起了手。
生:因为他还没有检验。
师:你们同意吗?
生齐答:同意。
师:对了,在解方程时我们一定要养成自觉检验的习惯,以此来检查方程的解对不对。
让学生在自己的本子上边回忆边检验,然后同桌互相检查检验的过程。
第一层:操作尝试,理解概念
为了让学生更好地掌握怎样去解答ax土b=c(b表示两数的积)的方程,我让学生自己去探究。
第二层:潜移默化,推导方法
其实这些“想”的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人”,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。
2023年简易方程解方程教学反思模板篇八
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=23 24÷x =6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。
2023年简易方程解方程教学反思模板篇九
长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的.关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。
猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。
任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。
学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。
练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3x=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。